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ABSTRACT

The work presented in this report falls into two classes,

namely on the reflectivity of solar infrared from high altitude clouds,

and on the effect of the energy reflected from these clouds on the

statistical performance criteria of a satellite-borne missile detection

system. The scattering of infrared from clouds of spherical water drop-

lets has been treated by Mie theory. For wavelengths in the range

2.5 - 10 micron, and for large angle scattering ( 1 60 - 900) the

effective reflectivity is due to single rather than to multiple scattering

by water droplets, as a result of the relatively large absorption and

the forward peak in the differential scattering cross section. The

effective diffuse reflectivity under these conditions is of the order of

1 - 2 percent. For actual situations, some discussion has been given of

atmospheric transmission losses as well as of meteorological data on the

distribution of high altitude clouds. Comparison with experiment is made

in a (classified) appendix, and the results are found to be consistent

with the limited experimental data. The statistical problem consists of

the detection of rare high radiance signals in a background having

occasional high radiance levels. The detection criterion thus involves

maximizing peak rather than mean signal-to-noise ratios. An analysis

in terms of likelihood ratios is developed, and it is shown that the

Neyman-Pearson criterion provides a usable partial maximization of sig-

nal detection probability. In practical cases, the Neyman-Pearson

criterion is equivalent to setting up a single threshold. Limited numeri-

cal applications are made for single and correlated detector elements.
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SECTION 1

INTRODUCTION

1.1 THE PROBLEM

A primary factor in IR surveillance from satellites for the

purpose of detecting rocket boosters is the infrared background in which

the booster must be detected. This report deals with the infrared back-

ground in the 2.7 micron band arising from clouds illu..iinated by the sun.

It is known that sunlit clouds are the major sources of background radi-

ance.

The problem of the sunlit cloud background can be separated into

two parts. The first part is the determination of the reflected solar

flux from an illuminated cloud taking properly into account the infrared

absorption in the atmosphere itself. The second part is the specification

of the statistical character of the background in terms of cloud frequency

distributions for height, size, and for irregularities. Here it is essential

to consider various kinds of detection and data processing systems because

different statistical properties of the background determine the perform-

ance of the different systems.

In the present report a fairly complete treatment of the first

part of the problem is presented. The second part is also treated with an

attempt to achieve some generality. However, the treatment is far from

complete and should only be regarded as an initial attempt.
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1.2 OUTLINE OF PRESENT WORK

Because of the unsatisfactory state of our knowledge of the

reflectivity of clouds in the infrared -- theoretical estimates differ

by almost two orders of magnitude, a thorough study of infrared reflec-

tion from clouds is made in Sections 2 and 3. The problem of Mie scat-

tering from water droplets having a distribution of radii is treated in

Section 2, where it is shown that in the near infrared the effective

cloud reflection mechanism for large scattering angles (9 Z 600) is

single scattering, while the effective cloud reflectivity for these

large scattering angles is of order I - 2%. Thus the problem of the

scattering of infrared from clouds of water droplets has been here solved

with sufficient accuracy for most practical purposes.*

The results of Section 2 are applied in Section 3 to the case

of a real atmosphere, where transmission losses and scattering effi-

ciencies are combined to provide a series of isoradiance plots assuming

uniform tropospheric cloud cover. Some discussion is given of the possible

effects of large ice crystals (Appendix 3A), while the results for cloud

reflectance are compared with the limited experimental data in Appendix 3B,

and are found to be consistent with these data.

For definiteness the numerical analysis is limited to the 2.7 micron

band. The same scattering analysis with somewhat different numerical

coefficients applies for a 2.7/4 A. (10 micron, but at lower wave-

lengths the problem is essentially different because the absorptivity

of the droplets is reduced to such an extent that multiple scattering

has to be taken into account. At longer wavelengths it is essentially

a matter of grey body radiation.
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The treatment of the statistical aspects of the background in

Section 4 begins with a general discussion of criteria for performance

based on statistical decision theory. Conceptual difficulties with

elemental costs and with a priori probabilities which are essential con-

cepts in this formulation are pointed out. It is ultimately made plausible

in Section 4.2 that a simple criterion based on likelihood ratios has

some degree of validity. The likelihood ratio test is applied to various

assumed radiance distributions in Section 4.4 where it is shown that non-

Gaussian bimodal distributions have an entirely different effect depending

on whether the system is evaluated by likelihood ratio or r.m.s. noise

criteria. In such bimodal distributions, the large background radiances,

although infrequent, have a large effect on performance which is not re-

flected in the r.m.s. noise criterion. It is also shown by an example

in Section 4.2 how the frequency distribution for radiance is related to

the height distribution of the clouds through the calculation of cloud

reflectivity given in Sections 2 and 3. In Sections 4.3 and 4.4, an

attempt is made to apply the likelihood ratio test to a comparison of

single sensors with multiple sensors with correlation, leading to a

rather obvious resulL that correlation does enhance system performance

if the spatial extent of a cloud is larger than the spatial extent of

the target. Finally, in Section 4.6 some remarks are made about optimum

linear filters.

In Appendix 4A an attempt is made to study two-dimensional

autocorrelation functions and Wiener spectra on the surface of a sphere.

It was found that the Wiener-Khinchine theorem does not hold under these

conditions.
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SECTION 2

I
SCATTERING OF INFRARED FROM ASSEMBLIES OF WATER DROPLETS

1

2.1 PHYSICAL PROPERTIES OF HIGH ALTITUDE CLOUDS

A high altitude cloud is an assembly of water droplets or ice

crystals, or a mixture of the two at an altitude of approximately 20,000

feet or more. Such a cloud may move relatively slowly under the in-

fluence of horizontal winds, as in the case of cirrus clouds or oro-

graphic disturbances, or comparatively rapidly (10-103 cm/sec) as a

result of internal convection as in the case of cumulus clouds.
2 'I

As yet there is rather little detailed experimental data on

high altitude cloud properties. Measurements of low altitude clouds

indicate water droplets with a mean radius of the order of 5 micron with

perhaps 0.1-1 gm H2 0/m 3. At higher altitudes one may perhaps expect a

somewhat lower water content. The droplet size distribution may be

represented as 
22

~n -ar

n(r) dr = N r e dr (2.1)

where n(r) is the number of particles per cc with radius r - (r + dr).

The mode radius of this distribution is r = n/a. Deirmendjian 2 .2 uses
-l c

n = 6, a = 1.5 micron , so that r = 4 micron. Here this distribution
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is examined in detail. Cases with smaller and larger droplet size,

r = 2, 8 micron, and with the same mean width of the frequency distri-c -

bution as for n = 6, a = 1.5 micron- , are also investigated, as are

models with r = 4 micron but with narrower and wider standard deviations.c

All the particle size distributions are shown in Figure 2.1 and Table 2.1.

In general we shall deal with thick clouds--this to be defined precisely

later--and thus the actual number of particles per cc or the liquid

water content of the cloud do not affect the scattering directly.

A cloud rises due to the buoyant forces present when the

temperature within it is higher than the ambient temperature. As the

cloud rises, its temperature drops as a result of both its adiabatic ex-

pansion and of turbulent mixing with the surrounding atmosphere. Thus,

under certain conditions, there will be ice crystals in clouds. For

instance, cirrus clouds are largely or entirely ice, while cumulus

clouds may also contain some ice crystals.

There are wide variations in the shape and size of ice crystals,

ranging from frozen water droplets, which may be almost spherical and

of the same mass as the water drops, all the way to prisms and hexagonal
2.1

cylinders up to 500 micron in their longest dimension. The shape,

size, number density and motion of these ice crystals are complicated and

incompletely understood functions of the ambient conditions, and it is

difficult to make any definitive statement about them, particularly with

respect to the frequency with which high altitude clouds of ice crystals

may occur. In this study, clouds will be treated as assemblies of water

droplets. In other words, effects arising from the specular reflection

*
It should be pointed out that water droplets of 1-10 micron radius

freeze at -35 to -400C because of surface tension effects. See Ref. 3.3.
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TABLE 2.1

SCATTERING OF INFRARED FROM VARIOUS DISTRIBUTIONS OF PARTICLES

Particle Mode Radius 2 4 4 4 8

rc = n/a (micron)

Width of Distribution Regular Narrow Regular Wide Regular

n 2 24 6 2 24

a (micron- ) 1 6 1.5 0.5 3

Mean Mass per Particle 2.5xi "10 3.40xi "10 6.25xi -10 2.01xlO 9 2.72xi0 9

(gin)

Density of Water (gm/m ) .0251 .0340 .0625 .2011 .2723

for 100 particles/cc

0Sbs (10" 6 cm ) .234 .358 .562 1.247 2.009

01 (10-6 cm ) .735 1.349 1.466 2.151 3.064
scatt

abs scatt 0.318 0.265 0.383 0.580 0.656

x = 2 7C r/ , 4.65 9.3 9.3 9.3 18.6
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2.4
of light from ice crystals such as haloes, sun dogs, etc., will not

be taken into account. Some of these effects are discussed in Appendix 3A.

The refractive index of water in the infrared has been tabu-
2.5

lated by Centeno. The results in the 2.7 micron band are shown in

Figure 2.2. There is no information on the temperature variation of the

refractive index of water, or on the refractive index of ice in this

frequency range. The most noticeable feature is the fact that water

absorbs significantly only for > j 2.7 micron. The physical reason for

this is that this is the wavelength corresponding to the highest molec-

ular vibration frequency of the H 20 molecule, or to the maximum frequency

of the spectrum of "lattice vibrations" of water.

2.2 SCATTERING OF INFRARED BY A SINGLE DROP

The scattering of electromagnetic radiation of wavelength

from a sphere of radius r is characterized by the parameter

x = perimeter/wavelength = 2 7rr/X . (2.2)

If x >) 1, we are in the "geometrical optics" region, while Rayleigh

scattering holds for x< 1. However, for x , 1, which is the case in the

visible and near infrared for the particle sizes under consideration, the

difficult "Mie Scattering" analysis applies.2 .6,2 .7 To solve the problem

in this regime it is necessary to solve Maxwell's equations for a plane

incident wave and spherical outgoing scattered wave subject to the

appropriate boundary conditions on the scattering sphere. The resulting

expressions giving the angular distribution and total scattering cross

section are given in Ref. 2.6, p. 630 ff, and Ref. 2.7, p. 114 ff. In

the notation of the latter reference, the results are
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(9) 0 I' (Q:j ; i 2 1() = I S(9) 1 2 (2.3a)

S 2n + a P (cos) (d/d) P(cose)1 (2.3b)
S1  n = 1 n(n + 1) sing n n

and/b PPnlj cos)
S n + + n b (2.3c)

2  ) 1 n(n + 1) sin]

a n'(y) +n(x) - m 4n(y) +nI'(x) (2.3d)
a n n I(Y) n(x) - m 4Yn(Y) n W(x)

b=m 4n' (Y) 4/(x) - "n(Y) I n(x) (2.3e)

m n (y) " n(x) - * n (y)  n'(x)

' n(z ) = ( 7t z/2)1/2 Jn + 1/2 W
) (2.3f)

n(z) - -(7r z/2)1/2 Nn + 1/2 (z) 
(2.3g)

n(z ) = ( cz/2)/2 H n+ 1/2 (2)z) (2.3h)

y m X 
(2.3i)

m n' - in" (note the minus sign!) (2.3j)

2-7



01 (2Trr r2/x 2  '0 (2n + 1) a j a 2 + Ibjn 23. (2.4a)n= 1

= (27rr 2 1x2) / 2 (2n + 1) Re(a + b) (2.4b)
n = I

where i (0) and ij (9) are the intensities of radiation scattered through

angle 9 with polarization parallel and perpendicular to the plane of

observation, which is the plane defined by the incident and scattered rays.

P (cosG) are associated Legendre polynomials, J (z), Ny (z) and H ( 2 )  (z)
nY Y

are respectively Bessel functions of first and second kind and Hankel

functions of the second kind

H(2) (z) =  (z) - i N 31 (z) (2.5)

m is the complex refractive index of the scatterer defined here with a

negative imaginary part. catt is the total scattering cross section
scatt

and

ext scatt abs (2.6)

is the extinction scattering cross section; 0b is the absorption cross
abs

section.

These expressions have to be evaluated numerically, using a

high speed computer. For the present purpose the computations were

carried out on the Aeronutronic IBM 709 computer using a program locally

called CLOUD. This program computes the differential scattered intensity

per particle averaged over the particle size distribution (2.1) in units

2-8



2
of (2- R/ X ) , where R = distance from scatterer to observer. It

applies for x > 0.1. The intensity shown in Figure 2.3 has been aver-

aged over the scattered intensities for polarizations parallel and perpen-

dicular to the plane of scattering

i av(Q) = 1/2 ( i U (9) + i (2.7)

The program automatically computes the angular distributions iav i,

i and the total and scattering cross sections. The results of Figure 2.3

and Table 2.1 give the results over the 2.7 micron band; in other words,

for the scattering cross section of Table 2.1, for example

= (1/3)f[ 0- (2.675) + 0ca (2.725) + 0- (2.775)
scatt scatt scatt scatt

(2.8)

where the complex refractive indices shown in Figure 2.2 show a number

of interesting characteristics.

(1) The effect of averaging over a particular size distribution

is to smooth out the rapid variations in the angular scattering distri-

bution. For illustrations see Reference 2.2.

(2) The angular distribution is always heavily peaked in the

forward direction and the ratio of forward to backward scattering is

very insensitive to the details of the distribution. This may be under

stood because the refractive index (n' - in") is not very different from

For Deirmendjian's distribution "2--that is, n = 6, a = 1.5 micron
1

in Equation (2.1)--90% of single scattered radiation goes into angles

of less than 360, while the scattering through angles of greater than

900 is essentially isotropic.

2-9

I



0
'44

J
1w1 1

14
1

N 2

N 2

A 6
-A -I 4

NARO

0 250 50- 750 1000 1250 1500 1800

Scattering angle 0 S12261

FIGURE 2.3 DIFFERENTIAL SCATTERING CROSS SECTION FOR A SPHERICAL WATER DROPLET
AVERAGED OVER PARTICLE SIZE DISTRIBUTIONS OF EQUATION (2.1).

(a) EFFECT OF BARYING THE DISTRIBUTION WIDTH FOR CONSTANT DISTRIBUTION
MODE RADIUS, rc 4 MICRON

2-10 a



100

10
N 24
A 3

4-,8

N 6

A .
ra41

-42
aA

045 0 7010 25 5018or 1

Scteigage0S26

FIUE23DFEETA CTEIGCOS ETO O PEIA AE RPE

AVRGDOE ATCESZ ISRBTOSO QAIN(.)

(b FETO ARIGTEDSRBUINMD AIS TCNTN

DITRBTINWIT

2-04



one, so that the reflectivity R for an infinite plane slab

n'-1) 2  "

R = (n " - 2 + n112 (2.9)
(n' + 1)

2 + n112

is quite small, actually of the order 1 percent (see Figure 2.2). In

fact, the relative amount of energy scattered through angles greater than

7C/_ - j( c/2)/J(O) where

J(g) =  0 dO sing dQ iav() (2.10)

is also of the order of 1 percent.

(3) The different particle size distributions do show some

difference in their behavior at intermediate angles (10 °.: 9 < 1200),

but even these differences are not very large. This is certainly a

consequence of the smoothing effect of the particle size distribution.

(4) The total or extinction cross section O' of Equation (2.6)
ext 2

increases with increasing rc, but not strictly proportionally to r.

This effect again is due partly to the effect of the size distribution,

and partly to the oscillatory behavior of OC7x (x) (cf. Ref. 2.6, p. 659,
ext

Figure 13.14).

(5) It is noteworthy that Ob/ O a increases with in-
abs scatt

creasing r , even though, of course, no change in refractive indexc
occurs. This may be understood qualitatively as follows. In the geo-

metrical optics region defined by x - 2 7r/>>> 1, for a sphere of

radius r is proportional to the surface area; that is, 0 C t &C r

On the other hand, the absorption cross section is proportional both to

2-11



the scattering cross section and to the path length within the absorber,
3

which again is proportional to the radius, so that a r3 . It is
abs

clear from this why one might expect O'/ at to increase with
abs scatt

increasing rc or xc.

(6) The small maximum in iv (9) at 0 - 1700 is a residual

rainbow2.2, 2.4 that is essentially a refraction phenomenon arising from

internal reflection combined with scattering. Increasing the absorption

will reduce the importance of this phenomenon.

(7) The insensitivity of the results to the particle size

distribution leads one to suspect a similar insensitivity to wavelength

in the 2 micron - 15 micron region, since the refractive index changes

comparatively little.

To sum up the results of the Mie scattering calculation, most

of the scattering from a single drop is in the forward direction, and
0

the scattering is essentially isotropic for scattering angles 9 ?490

The result that the effective large angle reflectivity is of the order

of 1 percent seems to be quite unambiguous; any statement to the contrary

is dubious. Finally / 0 a-*0.3, which represents a very
abs scatt

significant degree of absorption for the multiple scattering problem.

2.3 SCATTERING BY AN ASSEMBLY OF DROPS

a. Introduction

It is required to calculate the spectral radiance of a cloud of

water droplets under conditions of given (solar) illumination. That is,

a flux of radiation F watt/cm2 in the relevant frequency band *is inci-

dent on the cloud, and we ask for the spectral radiance H of the cloud,

In the frequency band 2.65 - 2.80 micron, F = 5.7 x 10-4 watt/cm
2

0
(See Ref. 2.8).
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I
jwhich is the power sent into unit solid angle from unit surface area.

Thus H is measured in watt/cm 2 sterad. Explicitly, if the illuminated

I surface area of the cloud is Sill, the radiance may be expressed in

terms of the differential scattering cross section per unit area, Qc(i9)

of the cloud as

H(G, 0) Sill = F° Sill Qc(i, 9) (2.11)

The aim here is to evaluate Q c(i,Q).

JIn this section it is first shown that multiple scattering is

unimportant except for very small angle scattering. Then a general

treatment of the reflection from a planar cloud is given. In appendices

we give a model to make quantitative estimates of the effect of multiple

scattering, and also a discussion of the scattering from spherical clouds.

The discussion of spherical clouds has been relegated to an appendix

first, because it is not as important as the case of planar clouds, and

secondly, because it has not proved possible to give a numerical solution

of the same degree of generality as for planar clouds.

IIt should be noted that the results of the present section
have rather wide applicability since the scattering cross section i av()

is essentially independent of the drop size distribution over a fairly

wide range, and since, in addition, the result for a large cloud is in-

dependent of the number density of droplets.

b. Single vs. Multiple Scattering

The possible effect of multiple scattering presents considerable

difficulties in the case of a large cloud. The general problem of radia-

tive transfer with partial absorption and an anisotropic angular distri-

bution has not been solved. 2.9 ,2 .10 However, in the present situation

of predominantly forward scattering with non-zero absorption, the effect

of scattering of orders higher than single scattering has been shown to

be small except for very small scattering angles. (See Ref. 2.9b).
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This result can be understood qualitatively as follows: Most

of the scattering is in the forward direction. For Deirmendjian's

2.2
distribution, 90 percent of the single scattered energy goes into

0 < 360, while the scattering is essentially isotropic for 0 > 900.

Also, a/ sa-' , 0.3 (cf. Table 2.1), so that in three collisions
abs scatt

the total intensity is down to l/e times the original intensity due to

absorption. By this time, however 90 percent of the remaining energy

would be scattered into angles less than 4 ?1 • 360 = 650. Thus,

multiple scattering will be unimportant for scattering through angles

greater than 60 to 900.

This same result has been obtained by Goldstein 2 .9b by an

explicit numerical evaluation. Goldstein compares first and second

order scattering with absorption by using some representative Mie

scattering results of Dermendjian. In this way he finds that single

scattering far outweighs double scattering except for scattering through

very small angles.

The predominance of single over multiple scattering makes the

calculation of the reflection of near infrared radiation from clouds

possible. This result has a number of interesting consequences:

(1) The absorptivity of water droplets is very high throughout

the region = 2.5 - 10 micron and above. Thus, the present analysis

applies throughout this frequency range with appropriate quantitative

modifications.

It should be pointed out that while the expansion in different orders

of scattering can be written down formally, yet for anisotropic angu-

lar distributions at least the real importance of the different

orders of scattering is very hard to estimate except by explicit

numerical evaluation.
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(2) In the visible region the absorptivity of water is very

low. Thus, in this region, a large cloud may be represented at least

roughly as a diffuse Lambert's Law reflector, because of the large

amount of multiple scattering. However, the justification of this pro-

cedure is by no means trivial, and in particular we do not know how to

treat the region 1 micron4X < 2.5 micron.

(3) In the far IR () 10 micron) a cloud acts as a grey body

emitter.

(4) It follows that, except possibly in the visible, the

description of a cloud as a Lambertial diffuse reflector is a very poor

one on physical grounds. Of course, it may turn out under certain con-

ditions that the concept of "diffuse reflectivity" may be useful for an

empirical description of cloud reflection if the effective diffuse re-

flectivity coefficient does not vary very much with scattering angle in

the appropriate region.

(5) For low altitude clouds there will be a significant degree

of attenuation due to the absorption of water vapor in the cloud in the

2.7 micron band. This mechanism is not effective above 30 Kft, where

the effective extinction of the beam within the cloud is due entirely to

absorption by the droplets rather than by scattering. Thus if there are

N scatterers per unit volume, the effective extinction distance within

the cloud, 3 , is given by the relation

SN 0-(2.12)

abs

(6) The extinction distance 0-i enables a precise distinction

to be made between small and large clouds. If the characteristic distance

scale of a cloud is denoted by L, then for L -1, one is dealing

with a small cloud composed of NL3 droplets all scattering independent-

ly. Thus, the total scattering cross section of a small cloud is given as
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Q (small),.., NL3 0r (2.13)
scatt scatt

On the other hand, for a large cloud defined in terms of L ) -, the

effective cloud volume seen is not L2 but L2 /A , since the incident

beam only penetrates -1 into the cloud. Thus, for a large cloud

(large) N = L2  scatt (2.14)
(scatt) 0 scatt 0 ab

In other words, for a large cloud the total scattering cross section is

independent of the number of scatterers per cc or of the scattering

cross section per scatterer *ca . Of course, the angular distribution
scatt

does depend on

abs

c. A Planar Cloud

Consider the single scattering from a large slab of material

containing N scatterers per unit volume and having a flat top surface

with an illuminated area Sill, which is the (xy)-plane z = 0 of our

system of coordinates (see Figure 2.4). The angles of incidence and

exit are respectively i and e measured from the local normal, and z in-

creases going into the scattering medium.

A volume of element dVA  has a total scattering cross section

N dV 0Csa , and the total amount of single scattered radiation sent
A scatt

into unit solid angle in the direction (9, 0) is

(1) . f " 0 (rIA + r Ad&H((0) SillA e ((r] (2.15a)
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Dco"/vtl, = ea- iv(9 )I/J (o)  (2. 15b)
scatt av

where J(0) = 745 for Deirmendjian's distribution of droplet sizes (n = 6,

a = 1.5 micron- ) in Equation (2.1). This quantity is defined in

Equation (2.10). All the quantities entering here have been defined

either in the text of in Figure 2.4. The factor e 0 (nA + rAE) gives

the effective extinction of the ray which is scattered through an angle Q

at the point A. The effective extinction is, of course, due to absorption

(see Equation (2.12) and the discussion immediately preceding it).

The integration over dVA is carried out extending Sf dx dy

over S il and letting z go from 0 tob . This gives the result

H M ~(9) = F N [ / dz e " Cf(i.e) z - F i e)

(2.16a)

f(i,e) = 1/cos i + 1/cos e (2.16b)

Finally, using Equation (2.12) fore , one gets the result

H( 1 ) (Q) vF ] Q v (0)
H ()Fo (Q C a (2.17)QP'absf(i,e) o scatt abs; J(O) f(i,e)

This result may be understood physically. For a large cloud

the absolute magnitude of the single scattered energy is proportional to

the incident flux F and to the illuminated surface area Sill, but does

not depend on the absolute magnitude of the scattering cross section per
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scatterer cat or on the number of scatterers per cc, N. The angular
scatt

distribution depends on the differential scattering cross section from

each scatterer, modified by the extinction within the cloud, which gives

rise to an "albedo" factor ( O a / C, ) and to a geometrical factor
scatt abs

[f(i,e) -. See item (6) of Section 2.2.

The differential scattering cross section per unit illuminated

surface area, Qc(i, Q) of Equation (2.11), is plotted in Figure 2.5 for

various valuesof i in the important case of coplanar scattering when the

incident ray, the local normal, and the exit ray all lie in the same

plane, so that

i + e + 9 = 7r (2.18a)

f(i, e) = I/cos i -l/cos(@ + i) (2.18b)

It is possible to write down the result (2.17, 2.11) in terms

of Lambert's Law diffuse scattering with an effective diffuse reflection

coefficient 71 ='I (i, 9). The appropriate expressions are

Qc( i ' 1) Li[ (i, 9) / 'r cos i cos e (2.19a)

9) Cavrr/aft 0 2.9b(i, = cos i cos e bs f(i, e) (2.19b)
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Some typical numerical values of 0(i, ) are given here:

i = e = 0 , 9 = 1800; .0099 (2.20a)

i = e = 50, 9 = 1700; 0 .017 (2.20b)

i = e = 450 0 = 90  ; = .024 (2.20c)

i = e = 600, 0 = 600 ; = .060 (2.20d)

i = 0, e = 9 = 900 ; = .033 (2.20e)

In view of the single scattering mechanism, the concept of a

"diffuse reflectivity" is rather unphysical. Also, the angular variation

of the numerical values of I (i, 9) indicates that it is not a very use-

ful concept for quantitative discussion.

These values, like the results of Figure 2.5, refer to the coplanar

case, so that they give maximum values for the scattering cross

section or reflectivity.
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APPENDIX 2A

A MODEL TO ESTIMATE THE EFFECT OF MULTIPLE SCATTERING

A phenomenological way to estimate the importance of multiple

scattering is to regard the cloud as made up of a single scattering layer

one extinction depth thick and a diffuse core with effective diffuse re-

flectivity I *. The coefficient 7* is obtained by matching the radiance

given by this model, H*(Q), with that for the single scattering model for

a given value 9* of 9.

Instead of Equation (2.16a) we have

H*(9) = FoN( ] ] 0 dz e" f(i,e) z + Fo( I ,/ ) cos i cos e

(2A. la)

= H (9) f 1 - ef(i ' e) ]  + F( */7' ) cos i cos e

where

e- f('e19*
* = f(i,e) cos i cos e ab (2A.b)

i+ e + * =A

Clearly the choice of 9* is not unique. 9* -7r for backward scattering
-2gives i = e - 0, f(i,e) = 2, * .0099 e = .00134. The function

Qc *(i,9) is shown in Figure 2.5 for i = 0, for comparison with Qc'
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3 It should be noted that the fact that Q * is similar to Q

does not by itself prove that multiple scattering is unimportant, but5 merely demonstrates the self-consistency of the present way of intro-

ducing multiple scattering in terms of a diffuse core underlying a

* single scattering layer.

I
I
I
I
I
I
I
I
I
1
I
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APPENDIX 2B

SCATTERING FROM A SPHERICAL CLOUD

It has not been possible to carry through the analysis of

Section 2, Paragraph 2.3c for scattering from a planar cloud to the

case of a spherical cloud. The reason for this is that we have not

succeeded in evaluating the volume integral of Equation (2.15a) for

spherical geometry. In the present appendix are given the formulation

of the problem and an approximate estimate of the cross section.

Consider the scattering of electromagnetic radiation through

an angle 9 by a sphere of radius a. In particular, a typical ray is

shown in Figure 2B.1. The ray is incident on the sphere whose center

is at the origin 0 at a point I whose spherical polar coordinates are

(a, ' '), is scattered at a point A(a-z, 7-, 8), and leaves the

sphere at a point E(a, I-", a"). The angles IOA, AOE are denoted by

', e "* and the angles OA, ONA are denoted by i, e in analogy with

the planar case.

It should be noted that i and e are constant for the planar case of

scattering through a constant angle 0, so that one gets different

scattering curves for different values of i, as are shown in Figure 2.5.

This is not the case for spherical geometry, where i,e vary for all

the different rays corresponding to scattering through an angle 0, so

that there is a unique angular scattering curve. However, this

feature complicates the evaluation of the integrals.
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FIGURE 2B.1. GEOMETRY FOR SCATTERING BY A SPHERICAL CLOUD.

IAE DENOTES THE PATH OF A TYPICAL RAY SCATTERED THROUGH AN ANGLE
0: NOTE THAT IN GENERAL THE FOUR POINTS I,A,O,E, DO NOT ALL LIE IN A PLANE.
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The triangle rule for (IOA) gives the exact result

= arcsin s -z/a - i (2B.1)

For large clouds defined in analogy in the discussion of Equation (2.14)

by

a le a z , (2B.2)

we may work to the lowest order in a/z. Then Equation (2B.1) gives

' = (z/a) tan i + O(z/a) 2  (2B.3a)

r. = z/cos i + O(z 2/a) , (2B.3b)

and to this order the volume element is

dVA = dz dS [1 + O(z/a). (2B.4)

Here dS is an appropriately defined surface element:

dS = a2 g( 6 & ) d cos'r d 8 (2B.5a)

=a 2  '( , ') d cos'V-I d B' (2B.5b)

where g, g' may be functions of the appropriate angles but are independent

of z to the lowest order in (z/a). Thus, to this order the radiance of

the cloud due to scattering through an angle 9 is
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F. N ('o[ /ajq J dVA e- PIA + rAE) (2B.6a)

=F 0N LbQr/baz. 9 e- (z f (i'e) Li + O(z/a)] (2B. 6b)

= F 0 -- f% : f(i,e) (2B.6c)

where

f(i,e) = 1/cos i + I/cos e (2.16b)

Thus far it has not proved possible to evaluate the integral

f dS/f(i,e) exactly. In general one may put

ffSe) = S (9) < 1/f(i,e) (2B.7a)

2 f
Sil()=a j Cos + d dol = 20 (2B.7b)

where the coordinates ( 4,4 ) are defined in Section 3.3, and in

particular in Figure 3.1.

An upper bound to <i/f(i,e)" av may be set as follows. First

of all, consider coplanar scattering; i.e., I, A, 0, and E all in the

same plane, and

i + e + = - ' = 7C £ - 0(z/a)] (2B.8)
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In this case for constant scattering angle 9,

f(i,e) = 1/cos i - 1/cos(O + i) (2B.9)

and as i varies,

f(9) = 2/sin(l/29) f f(i,e) 4s (i =7C/2) (2B.10)

Thus we have an upper bound on </f(i,e)>av

<I/f(i,e) > avk 1 /f(') . (2B.11I)

Thus an upper bound for the scattering cross section per unit

illuminated area, Q spher(), is given by the expression

Qs~hr ( @  00-410 @ (1/ 0 'abs)WO/rL 0 (Max)

sphQsherr @

spher Sill(@) f()spher )

(2B.12)

(Max)
The function Qspher (9) is shown in Figure 2.5.

In general the representation of a planar cloud is signifi-

cantly more useful than that of a spherical cloud. However, under

certain conditions of oblique viewing the effect of the edges of clouds

may be important, and here the model of a spherical cloud may prove of

interest. In any case, the analysis can certainly be extended, although

numerical techniques may be necessary to evaluate <i/f(i,e)>av.
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SECTION 3

SCATTERING OF SOLAR INFRARED FROM CLOUDS

3.1 METEOROLOGICAL DATA

Natural clouds are made up of assemblies of water droplets

or ice crystals. In either case, the water content is in the range

0.1 - 1 gm/m3 at the higher altitudes, and up to 10 gm/m3 at sea level.

For water clouds, observed droplets range in size from 2 - 30 micron

radius, with mode radii 4 - 8 microns. In the case of ice crystals, the

particles may be of roughly the same size, or there may be significantly

fewer particles up to 500 microns in their largest dimension. The

shape of the ice crystals may be hexagonal, prismatic, or complex, and

the crystals may possibly be aligned by convection currents within a

cumulus cloud, or (less probably) by wind shear in the case of cirrus or

j stratus clouds.

Cumulus clouds in general cool by adiabatic expansion accompany-

ing their rise, rather than by thermal exchange with the ambient atmosphere.

These clouds undergo constant convective stirring, which leads to the

characteristic anvil or mushroom shape of thunderheads. It should be

mentioned that I - 10 micron droplets freeze at -350 C to -400 C on account

of surface tension effects, so that the question of under what conditions

clouds are made up of ice crystals rather than water droplets does not

necessarily have a simple answer.
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I
j Below the tropopause (30-40 Kft) there is a great deal of

local atmospheric structure and, hence, various types of clouds. In

general, there is a relatively high probability (10% for the continental

U.S.A.) of more or less uniform cloud cover at the tropopause. At the

present there is not much quantitative data on higher clouds except for

Tiros satellite pictures, which have not yet been processed completely.

Tropical thunderstorms associated with hurricanes or typhoons form

cumulus systems up to several hundred miles across which have been known

to "burst through" the tropopause and rise to a significant height. At

3 higher latitudes there is not much statistical information, but one might

infer that for a cloud to rise a height h above the tropopause the linear

3 dimension of the cloud has to be at least of the order h.

There are known several rare and not very dense types of very3 high altitude clouds. These are "noctilucent" clouds at up to 30 KM

(90-100 Kft) altitude, which are very thin and composed of ice crystals,

and "nacreous" or "mother-of-pearl" clouds at 20-30 Km which are inferred

to be composed of spherical particles of rather uniform size on account

of their color.

In summary, it must be stressed that the present discussion

clearly does not do justice to the large amount of meteorological work

of observing and classifying cloud data. Up to the present, most experi-

mental work deals with rather low altitude clouds (less than 10 Km or

30 Kft) as far as observation and sampling go. New information from

satellites, balloons and high altitude jet airplanes is beginning to

jsupplement these data. Unquestionably, in 3 to 5 years there will be

available much more information on high altitude clouds than exists at

Jpresent.
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3.2 TRANSMISSION LOSSES

ja. Introduction

The attenuation of solar infrared in the 2.7 micron atmospheric

jabsorption band, which is here interpreted as 3675 + 100 cm"1 , is to be
examined for heights above 10 Km. The absorption in this band is due both

to C02 and to H20. The C02 in the upper atmosphere is well known to be

mixed uniformly with air (.03% by volume). The amount of CO2 at S.T.P.

in a vertical one-way path to infinity is 240 atm-cm (cf. Ref. 3.1,

ch. VIII), and at a pressure of (p/Po) atmospheres, the residual amount

is 240 (p/po) atm-cm.

The amount of water vapor and its distribution are not so

firmly established. Here the latest compilation of Gutnick3 .5 is used.

The results are shown in Table 3.1. It should be noted that Gutnick's

estimates only extend up to 34 Km, and it is quite possible that there

is a significant amount of water at higher altitudes. For instance, if

the density of water vapor from 34-50 Km is 0.2 gm/m3 , the amounts of

precipitable water at all altitudes in Table 3.1 have to be increased by
2

.0032 gm/cm . This is simply a measure of the experimental uncertainty

of this quantity.*

It should be pointed out that it is not completely clear whether the

water vapor concentration is a single function of height3 "5 , or whether

in fact there are large variations, by factors up to 100 - 1000 between
3.6

a "wet" and a "dry" atmosphere The present concensus favors the

uniform distribution.
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TABLE 3.1

ATMOSPHERIC WATER VAPOR CONCENTRATION AT HIGH ALTITUDES

Altitude h Atmospheric Density Mixing Ratio Water Density Precipitable
(Kin) f(Kg/m3 ) m (gm/Kg air) m (gm/m 3 ) Water

(gm/cm2) from
34 Km Down

10 4.135 x 10-1 .038 1.571 x 10 - 2 .00678

12 3.119 x 10-1 .017 .530 x 10- 2 .00468

14 2.279 x 10-1 .010 .228 x i02 .00392

16 1.665 x 10-1 .0095 .158 x 10- 2 .00353

18 1.217 x 10-1 .012 .146 x lo- 2  .00323

20 8.891 x i02 .018 .160 x 102 .00292

22 6.500 x i0 2  .027 .176 x i0 2  .00259

24 4.752 x i02 .039 .185 x i0 2  .00223

26 3.436 x i0 2  .060 .206 x i02 .00184

28 2.436 x 10 - 2 .088 .217 x 10 - 2  .00141

30 1.786 x 10-2 .125 .223 x 10- 2  .00097

32 1.304 x 10- 2 .180 .235 x 10- 2  .00051

34 9.602 x 10- 3  .290 .279 x 10- 2  0

h1
*(1) Precipitable water from height h to hi fhto h I =( m)h dh.

(2) If ( m) z 2 x 10-3 gm/m3 from 34 - 50 Km altitude, the additional(22

amount of precipitable water is .0032 gm/cm 2 below 34 Km.
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The transmissivity for a vertical one-way path from infinity

down to the reference altitude h is given in Table 3.2. The transmissi-

vity factors used there have been obtained from the calculations of

Plass, Stull, and Wyatt3 "7  It should be mentioned that the transmissivity

calculations apply to constant pressure; we have used values corresponding

to p(h), where p(h) is the atmospheric pressure corresponding to the

reference altitude. This is clearly not completely satisfactory from

a quantitative standpoint, but provides an estimate, which is all that is

called for in the present application.

b. Slant Path Transmission

The fact that the densities of C02 and H20 are functions only

of altitude (rather than of geographic location) implies that for a

slant path from a point A to infinity, inclined at an angle 10 to the

vertical, the effective absorbing path length is given by the relation

Slant Path Length (Angle "5 ) = (Vertical Path Length ) / cost (3.1)

This condition holds for an appropriate range of Y : in particular, if

Ro  radius of the earth, h = maximum height at which there is significant

attenuation (h° - 100 - 150 Kft), then (3.1) holds, provided

( r -i) >> h / R , (3.2)
0 0

or, since h 0/R 20 minutes of arc, Eq. (3.1) holds for 0 4 It' < 890

If the vertical one-way transmissivity from point A to infinity

is t, then, provided Eq. (3.1) holds,

-n

Slant Path Transmission Loss = t(cos n)  0 < n < 1 (3.3)
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where
3 .8

n = 1 for the "weak line approximation"

n = for the "strong line approximation with no overlap" (3.4)

n < for the "strong line approximation with overlap"

3.8
The overall problem is a very complicated one . In the calculations

of isoradiance plots in Section 3.3, we use n = 1; i.e., the "weak line

approximation."

3.3 REFLECTION OF SOLAR INFRARED FROM A UNIFORM CLOUD COVER

a. Introduction

In Section 3.3 we discuss a uniform tropospheric cloud background.

In practice there would be large black areas due to the absence of

clouds at the tropopause and occasional bright spots arising from high

altititude clouds.

For definiteness we consider a satellite D at a height

(r-a) = ( ? - l)a above the surface of the earth, whose radius is a.

For a numerical example, we take the satellite height to be 2000 miles,

so that T = 1.5. Let the sun S be at an angle of elevation relative

to the satellite. The question is now the following. The satellite

scans the portion of the surface of the earth that it can observe with a

very narrow beam. Under these conditions, how much radiation in the

2.7 micron band does the satellite receive as a function of its direction

of view, of the elevation angle, of the normal one-way transmissivity

factor t of Section 3.2, and of the scattering law i av(9) of Section 2

and Table 3.3?
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TABLE 3.3

THE SCATTERING FUNCTION i a(e)*

Scattering Angle 9 (degrees) lav(9)

0 10,448

5 5,970.2

10 1,599.4

15 559.9

20 297.8

30 107.6

40 44.07

50 20.10

60 10.21

70 5.929

80 4.091

90 2.659

100 2.171

120 2.078

140 1.984

160 1.891

180 1.798

This function differs from the exact result of Section 2 in that the

"rainbow" maximum at 9 - 1700 has been smoothed out.
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The numerical calculations have been carried out for t - 0.1 and

0.5 and for o. - 00, 450, 900, 1200, and the calculation has been programmed

so that a different scattering law i av() may be inserted readily-in the

form of a table if it is desired to repeat the calculation for different

values of the parameters.

b. Geometrical Considerations

The geocentric coordinate system used here is a slight modification

of that of Zirker, Whipple and Davis3 "I0  All the coordinates that arise

are shown in Figure 3.2, where D defines the z-axis and DOS the (zy)-plane,

so that

D = (0,0,a ) (3.5a)

S = lim % (0,sin a4 , coso ) (3.5b)

The geocentric angles are a latitude 4' and a longitude &j . The

latitude q4. = 0 defines the equatorial (yz)-plane, and the latitude

4 =n/ 2 defines the positive x-axis. The longitude G4 = 0 defines the

positive z-axis, and point A on the surface of the earth has the coordinates

A = a(sin k4 , cos q/ sin (. , cos 4/ cos. ) (3.6)

and the surface element on the sphere is

dS=a 2 cos * d4k do 4 (3.7)

The vector Zhas magnitude 0, and is given as

- a(-sin 4 -cos qsin j -cos %P cos .) (3.8a)

I 4 (3.8b)

12 /a 2 - 02 - 1 +  ?2 _ 2 cos + cos ,.) (3.8b)
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FIG. 3.2. LIMITING VALUES OF-J.

The viewed illuminated portion of the earth is characterized by
1-I < arc cos(1/,P ) because of the condition QAD > (JAcD) =1W2. see
Eq. (3.12).
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In terms of these geocentric angles ( 4',Co ), the local angles
of incidence, exit, and scattering at the point A are given by the following

relations:

Cos i- (EOA' EAS) cos P cos(OL - () (3.9a)

cos e (EOA' EA) - (l/0)( cost* cos G -1) (3.9b)

Cs (E AS, EAD ) Cs k Cos YCos \,J ) (.c

EOA is the unit vector parallel to OA, and so on. The angle 7r - 9,
whereQA- = -,

where 9 is the scattering angle of Section 2.

In principle, this specifies the problem. However, it is more

convenient to express the results in terms of the angles of view of the

satellite, here chosen as ( , ) and sketched in Fig. 3.1. By referring

to Fig. 3.1, one sees that

A -#-4
cos COA = (EOA, EOC) = cos Y cos O (3.10a)

CA - a sin C A f a(l-cos 2  Cos2 )2 (3.10b)

AB = a sin (3.lOc)

and thus

sin AB/AC = sin / (l-cos 2 % cos2(o (3.11a)

sin AC/AD (1-cos 2 t4 cos 2 )/ (3.11b)
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FIG. 3.1. GEOMETRY FOR SCATTERING OF SOLAR RADIATION FROM A POINT A ON THE SURFACE
OF THE EARTH TO THE DETECTOR D.

X is the elevation angle, (4 ,-) are the latitude and longitude of A, i, e, e =

0 - are the angles of incidence, exit and scattering for the ray SAD under
consideration here. ( ) , 7 )are the angles of view of A from the satellite.
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There is one further matter to be discussed, namely the limiting

values of the angles ( k' CO). First consider W , and see Fig. 3.2.
-4 A

The limiting ray DA corresponds to DA 0 = 7r/. , and thus for 0 c. 47T
C C

Min ( ,o( - 2 ) < 4 ( S = arc cos (1/ ). (3.12)

For the limit on k , see Fig. 3.3, where the limiting ray DAd is shown.

A -4 -_4cos DOAd = I/ = EDO' EAd) = cos 9 cos WA. (3.13)

so that for each CA which satisfies (3.12), we have the limits on 4, -

I *+'I arc cos(l/. CosCj )(3.14)

c. Isoradiance Plots

The earth is taken to be covered by a uniform layer of thick

flat-topped clouds at an altitude corresponding to a vertical one-way

transmissivity, t, measured from the cloud top altitude to infinity. One

calculates the spectral radiance H(A) at a variable point A on the layer

H (A) F scatt 1 iav () tf(i,e)

= ° O abs I J(0) f(i,e) (3.15)

The point A is characterized by geocentric latitude and longitude WCJ

respectively and for a given set of angles ( %4, W' ) the angles of incidence,

exit and scattering i,e, 0 - 7r- are given by Eq. (3.9). The term

tf(ie) gives the fractional energy loss on a slant path: sun-cloud point A -

detector under the "weak line approximation" of Eq. (3.3, 3.4). In general,

this factor is

fn (i,e) tlCcos i)n + l/(cos e)rj 0 4 n 1. (3.16)
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FIG. 3.3. LIMITING VALUES OF LATITUDE "

For a given value of '' , the viewed illuminated portion of the earth is
characterized by oAD oAdD = i"/2, and thusl1I arc cos(l/ P cos L"). See

Eq. (3.12-14).
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F °  .000568 watt/cm 2 is the solar radiance in the 2.7 micron band
3 .10

while the remaining terms just give the angular scattering cross section

per unit area, Q c(i,) of Eq. (2.11, 16, 17) and Fig. 2.5.

The scattering function i av() used here is given in Table 3.3.

It differs slightly from the accurate form of Section 2.2, Fig. 2.3, in

that the "rainbow" maximum at e = 170 has been smoothed out. This was

done because this maximum complicates the plotting significantly, and its

effect is a factor of two at most, which is not particularly significant

for a first look at the isoradiance contours.

The computational problem is the following. For a given cloud

point characterized by the geocentric latitude and longitude (14 ,(w),

the satellite viewing angles ( ,YL ) are determined from Eq. (3.11) and

the angles (i,e, m7r - 9) are obtained from Eq. (3.9). The function

i av(9) is obtained by a "table look-up" routine and H(A) calculated from

Eq. (3.15). This part of the problem is carried out on a high-speed

digital computer for a range of points A. From these data isoradiance

contours are obtained as a function of the satellite look angles ( ' ,- )

by manual cross plotting. The isoradiance plots for a range of trans-

missivity factors t and elevation angles &, are given in Fig. 3.4.
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Fig. 3.4 Isoradiance Plots

f The lines drawn are contours of equal brightness as a function

of the satellite view angles ( , ). They are calculated from Eq. (3.15)

for various elevation angles O< and transmission factors t. The numbers

listed give log H, where H is measured in watt/cm 2 sterad, increasing up

to the value of the central maximum on a given plot. Graphs are shown for

0( - 0, 450, 900, 1200 and for t - 0.1, 05.

i
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d. Effect of Inhomogeneities

Apart from the obvious effect of holes in the cloud cover at

the tropopause on the isoradiance curves of Fig. 3.4, irregularities and

detailed structure in the top of the cloud cover can produce certain

changes. Casual observation from jet airplanes shows that sometimes the

cloud cover looks extremely uniform, sometimes it has a .ery regular

structure, and sometimes it is quite irregular, with convective humps

above the general level of the surface and with occasional wisps of ice

crystals from cirrus. Of course, by looking from airplanes one cannot

give a quantitative measure of the scale of irregularities. The question

arises, how much and in what ways will these phenomena affect the general

level of the radiance of the cloud cover?

First of all, the relevant measure of "flatness" of the cloud

tops is given in terms of the extinction length

I =N abs

For Deirmendjian's distribution of Section 2 (cf. Ref. 2.2, Table 2.1)

with N = 100 particles/cc, the extinction distance is of the order of

200 meters.

Consider next regular modulations of the cloud top. If the

cloud top is made us of closely packed circular cylinders of spheres,

elementary geometrical considerations show that if the sun local normal

angle is less than 600, the effect of shadowing will be to cut the over-

all radiance by less than a factor of two. The effect of modulation

clearly depends on the frequency response of the detector system as well

as on the precise direction of the &can, but no detailed examination

seems called for at this point.
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The effect of large irregularities will clearly be to distort

the picture significantly, but any estimate of the magnitude and character-

1 istics of these distortions involves so much detailed input information

that once again no further investigation seems appropriate in the present

I context.

Finally, it is clear that the overall effect of inhomogeneities

depends on the resolving power of the detecting system.

I
I

I
I
I
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APPENDIX 3A

SPECULAR REFLECTION FROM ICE CRYSTALS

At present there exists essentially no experimental information

on the actual composition of high altitude clouds , but it seems at least

plausible to suppose that they contain a certain fraction of ice crystals.

It may well be that the reflection properties of natural clouds of ice

crystals do not differ very much from those of clouds of water droplets,

but this point is certainly not established. The purpose of this appendix

is to outline some characteristic differences between water droplets and

ice crystals, mainly to provide a starting point for more detailed future

work.

The problems to be mentioned are the composition as far as

crystal size under given conditions is concerned, the motion of the crystals

with reference to possible alignment effects, and the diffraction pattern

produced by crystals of given size.

b. Composition and Structure of Clouds

It is established that the size and crystal structure of ice

crystals depends significantly on the conditions under which a cloud is

produced.

(1) Current work by B. J. Mason's group at Imperial College,
3.11

London, has established both experimentally and theoretically that

cloud droplets of less than 20 ) radius cannot capture smaller droplets

to grow by coalescence. On the other hand, in a supercooled mixture of

water droplets and ice crystals, the crystals grow at the expense of the

droplets as a result of a vapor pressure gradient.
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(2) Artificial ice fogs produced in winter by seeding the

moist air near Old Faithful geyser in Yellowstone National Park 3 .1 2 appear

to show an overall angular scattering distribution rather similar to that
3.13

predicted by Mie theory calculations like Deirmendjian's and the present

ones (cf. Section 2). However, there are also some very striking specular

effects.

(3) As against this, certain other measurements on natural

ice fogs off the West Coast of Alaska dealt essentially with frozen water
3.14

droplets

3.2
(4) Extensive measurements by Weickmann & Aufm Kampe have

discovered prismatic single crystals up to several hundred microns in

length and with a length-breadth ratio of the order of 1 - 5, and hexagonal

plates of the same maximum dimension and perhaps 50 microns thick.

In summary, there does not appear at present to be sufficient

experimental evidence to enable us to make any categorical statements about

the size and shape of ice crystals. In particular, there seems to be no

justification in favor of using results for low altitude ice fogs to infer

the behavior of high altitude cirrus clouds. Such factors as the absolute

humidity, density, temperature and temperature gradient and availability

and type of condensation nuclei are simply not understood adequately as

far as their detailed effect on cloud composition and structure is concerned.

b. Motion and Alignment of Ice Crystals

The terminal fall speed of a sphere of radius a and density in

a medium of density mand viscosity mis

a2
Vterm = (2/9) g a ( ? m) /  m (A.1)
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For air, Im = 10 "4 gm/cm sec, so that for water droplets of radius a - 1,

10, 100 microns the terminal speed v term is respectively 10 - 2, i, 102 cm/sec.

In other words, for crystals of dimensions I - 500 microns, possible

convective flow speeds in clouds, which may go up to 103 cm/sec, are adequate

to maintain the particles in suspension.

Ice crystals may be aligned either by non-uniform flow fields

such as wind shear (especially for needle-shaped particles), or by aero-

dynamic forces, which are particularly important for disks and other

flattened objects (L/D > 1). The effect of wind shear can readily be

shown to be unimportant. In laminar flow, wind shears u/ ) y are of

the order .03 (cm/sec)/cm 3 15 , and thus for a crystal of dimensions

102 x 102 x 10 (in micron), the force A I m - u/" y is of order 10-1 0 dyn,

as against the gravitational force mg -- 10 dyn. Thus, unless velocity

gradients in turbulent flows are 104 - 106 times larger than these observed

values, the effect of wind shears will be negligible.

As far as the overal aerodynamic motion of objects of various

shapes under the action of viscosity and gravity is concerned, qualitatively

this is a very complex "phugoid" motion. Two examples of this are shown

in Fig. 3A.l. Whether the motion is damped or autorotating depends on para-

meters such as the wing loading, Reynold's number, ratio of the moments

of inertia, etc. The overall aerodynamic problem is a very difficult
3.16, 17, 18one

c. Diffraction Pattern

As a measure of the importance of diffraction effects, consider

the Fraunhofer diffraction from a circular aperture of radius a. The

angle 81 of the first zero in the diffraction pattern produced by light

of wavelength X is given by the relation

sin 91 = 0.61 ( / /a). (A.2)
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(a) DAMPED MOTION (b) AUTOROTATING MOTION

S12255

FIGURE 3A.I. POSSIBLE PHUGOID MOTIONS OF ICE CRYSTALS
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Clearly this angle 61 gives a measure of the effective width of the

diffraction pattern. For () /a) L 1, G 1 is so large that the structure

of the scattering object is unimportant: in this situation treating the

crystal as a sphere will clearly be a good approximation. On the other

hand, diffraction effects are clearly unimportant for ( X /a) < 1, so

that the specular reflection will be important in this region. In this

geometrical optics case it is necessary to understand the orientation

and motion of the crystals, as well as their shape and size, in consider-

able detail. This sort of information is simply not available at present.

d. The Energy Reflected Specularly from a Cloud of Ice Crystals

Let the flux of solar radiation be F watt/cm 2 in the relevant
0

frequency range. Under conditions of specular reflection, a fraction

q = scatt (A.3)

O'scatt + oabs

of this energy goes into a solid angle S about the direction of

specular reflection, where

9Q = iO diffraction +  cmotion (A.4a)

(9 diffraction E 12 (A.4b)

motion < 922 av (A.4c)

where 82 is the mean change in orientation of the crystal under the action

of aerodynamic forces.
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2
For a single crystal of area A = a , the energy radiated

per unit solid angle within a cone 1?w about the direction of specular

reflection is

[W WI/YL = F ° A q/ Ew (A.5)

Now if there are N crystals per cc, the extinction distance is of the

order

- - (NA)- (A.6)

Thus for a large cloud the total energy radiated specularly per unit of

illuminated surface area and per unit solid angle within a mean solid

angle 8w about the direction of specular reflection is

N S 
(A. 7)

H ill F q/ (watt/cm2 sterad),spec Sill o sea)

where q - 0.7 while SW is of course not known in general.

The result (A.7) should be compared with the result (2.17) of

the Mie scattering analysis

or, i (0)
H (9) = F scatt av (2.17)

0o bs J(0) f(i,e)

For scattering angles greater than 600 or so, ia,()/f(i,e) - 1,

and thus

2 o- o
H () F 0o/300 (watt/cm sterad) for 9 >,60 -90° . (A.8)
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It is clear that at least for scattering angles greater than 600 - 900,

at the appropriate angle the effect of specular reflection will predominate

over Mie scattering. The relative magnitude and thus the lower limit to

scattering angles for which this is true depends on Y , but for

J 1, e > 60 .. 900, H 200 H (8).

spec
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SECTION 4

DETECTION AND DECISION SYSTEMS FOR NON-GAUSSIAN BACKGROUNDS

4.1 INTRODUCTION

A central question encountered in the design of IR surveillance

detection and decision systems is the discrimination between a target and

a severe background. There are really two related problems, namely:

(1) How to find the optimum detection system.

(2) How to best describe the background and target radiances.

For our purposes discrimination between a target and a severe

background means that the detection system will be required to decide

whether a particular alarm signal received is due to a target or a back-

ground condition, that is, the system must be able to distinguish between

targets and severe backgrounds occurring separately rather than simul-

taneously. The occurrence of a target together with a severe background

will be a very rare event (and therefore relatively unimportant) since

each individual event in itself is rare. It is the events which produce

false target indications which cause the main difficulty in IR surveillance.

For example, consider an infrared detection system operating

from an Earth satellite whose purpose is to detect a missile launch from

plume radiation. If it is accepted that there exist occasional severe

backgrounds due to high-altitude, infrared-reflecting clouds, then the
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next question is how to make a detection system work despite the severe

background. Numerous discrimination schemes have been suggested which

take advantage of background and target signal characteristic differences.

Each scheme may be examined in terms of the background model(s) which

may be developed to decide which appear most promising. Statistical

methods are generally involved, and such methods will be used for selec-

tion of background descriptions and comparison of various alternate

detection systems.

An optimum detection system is defined for our purposes as

one which is capable of extracting a target signal from a background and

of deciding for or against alarm activation with a minimum of incurred

errors or "cost." There are two kinds of possible errors which may be

J made in deciding for or against an alarm with associated probabilities

of error. These are:

(1) Mistaking a target for a cloud.

(2) Mistaking a cloud for a target.

The second type of error becomes serious if the cloud radiarnce probability

density distribution overlaps the target radiance distribution and if

the threshold for alarm decision is determined so that a warning will be

sounded for the majority of possible target radiances. False alarm then

becomes a nuisance, and it is imperative that the detection system be

designed with an optimum capability for discrimination against background

radiances in the high radiance tail of the probability density distribution.

A general criterion for system performance based upon statisti-

cal decision theory is formulated in Section 4.2. This provides a funda-

mental basis for examining various discrimination schemes. The general

approach has been to minimize the expected costs for the various possible

detection outcomes. This approach, however, requires a knowledge of the

a priori probability of target presence and the assignment of costs to

the possible detection outcomes.*

See Section 4.2 b for specification of the four possible detection

outcomes.
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It is shown in Section 4.2 that the Neyman-Pearson criterion
4

of minimizing the conditional probability of target miss for a given

conditional probability of false alarm represents a partial minimization

of the expected cost. The virtue of this criterion is that it does not

require a knowledge of a priori probabilities and costs. Furthermore,

in most of the situations encountered in the present study, this criterion

reduces to the single signal threshold criterion for deciding for or

against target presence.

In Section 4.3 the properties of probability density functions

representing the background radiance patterns under the various imposed

conditions (sun angle, elevation angle of azimuthal scan, etc.) are

investigated and typical non-Gaussian models are presented. Finally,

since the physical model developed permits only the derivation of proba-

bility density functions for background radiance and not for the signal

input to the decision device, the conditions under which these two proba-

bility density functions are identical are examined, and possible approxi-

mate methods for transforming the radiance probability density function

to signal density function are considered.

It may not be possible to discover the optimum detection system

design. In fact, one would probably be content with a system which works

despite severe background without too much regard for whether the system

is optimum or not. A variety of design approaches are possible if optimi-

zation is not required but, instead, simply a workable system;

A performance criterion developed in Section 4.2 e is applied

in Sections 4.4 and 4.5 to the cases of the single sensor and the multiple

sensor with correlation of output signals. The criterion permits the

comparison of the relative performance of these two types of systems. The

result of the comparison indicates that correlation can enhance system

performance considerably if sunlit clouds are indeed several times larger

than the target.
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In Section 4.6, the optimum linear filter is considered. In

Jthis connection, the best representation of background information has
become controversial. As Robinson has pointed out, many of the possible

representations of background radiance information do not retain enough

of the background information to permit the design of an optimum detection

system. The problem of representing the background adequately becomes

more severe when sophisticated discrimination methods are considered.

Some of the possible representations of background which may often be

found inadequate are:

T (1) One dimensional Wiener transform and autocorrelation function.

(2) Two dimensional Wiener transform and autocorrelation function.
2

(3) Radiance probability density function.

(4) Radiance joint probability density function.
3

(5) Rough radiance maps using limited gray scale.

The problem with the use of the first two descriptions which

RobinsonI has pointed out, arises because of two factors. First, the

background probability density function is generally non-Gaussian. In

this case the methods applied to the selection of an optimum linear signal

processing do not permit the selection of the best possible processing

which may actually be a non-linear filter rather than linear. Second1y,

the requirement of decision for or against alarm of the basis of signal

level relative to a threshold introduces an inherent non-linearity in the

system. Any design approach which does not account for the non-Gaussian

nature of the background and the non-linearity of the decision processes

cannot be expected to succeed.

It is clear that it is not essential to retain all background

information for design purposes, since, depending upon the detection and

discrimination method selected, much information will be irrelevant to

system performance. A complete background description would consist of
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an enormous quantity of high resolution, large radiance-ranges, radiance

Jmaps with geographical location, time (including season and sun angle),
weather conditions, detector position, wavelength region, and other condi-

J tions assigned to each map. Fortunately, the complete description will

probably never be required for the design of any particular system. The

problem is, then, reduced to one of selecting the appropriate background

description for the design of a detection system employing the selected

discrimination method.

The comparison criterion developed and applied in the later

sections specifies the best way to express the background in the appropri-

ate form with regard to the particular discrimination method which it is

desired to use. Thus, the problem of the appropriate form of the back-

ground representation disappears. However, the great practical difficulty

of obtaining the numerical values for parameters appearing in the background

expression still remains. The solution to this particular problem lies

in improving methods of data gathering, processing, and reduction and in

performing additional background measurements of sufficient extent.

4.2 PERFO1MAANCE CRITERIA

Various performance criteria will be discussed and compared in

this section. The general approach to the design of optimum detection

systems has been to formulate the expected cost in terms of the decision

outcomes. This approach is one suggested by statistical decision theory.
6 ,7

The criterion for this general approach is that the best system is one

which minimizes the expected cost of the system outcomes. Here cost is

used in a very broad sense of damage or hurt of any sort incurred. How-

ever, the practical feasibility of this decision theory approach is

limited by the knowledge of certain doubtfully obtainable a priori proba-

Ibilities and by the necessity of assigning cost values to particular detec-

tion system outcomes. We will see that a partial minimization of costs

1 4-5
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is possible even though the numerical values of the a priori probabilities

and costs of system outcomes are not known. This partial minimization

is adopted in the subsequent applications.

The minimization problem is outlined as follows: A sample

function is observed over a finite time interval. This sample function

consists of background signal having known statistics and may or may not

contain a target signal. The observed sample function is suitably pro-

cesb J and then a decision is made as to whether a target signal is present

or not. For each of the four possible combinations* of target.signal

presence and decision a cost is assigned. The system is then optimized

by finding the decision rule which leads to a minimum value of the expected

cost.

a. Probability Density Functions

It is convenient to formulate the detection problem on a discrete

basis. The background is described by a set of numbers which give the

radiance in each resolution cell of a finite area. Since these numbers

are obtained by sampling the outputs of sensors, they also include all

of the noise components arising from the background signal and the system.

A convenient method of representing these background samples is a row

matrix of n elements, where n is the number of resolution cells in the

area being considered. The components of this matrix may be assigned in

any known manner to the resolution cells. It is assumed that the time

sequence in which the cells are observed precludes the possibility of a

particular moving target appearing in more than one cell. Let the back-

ground matrix be designated as

B = fbl, b2 . . . . . . .. . bn} (4.1)

See Section 4.2 b
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The background has associated with it a probability density function

designated as w (B) and normalized such that

Jw(B) dB - 1 (4.2)

The function w (B) represents the probability that the background signal0

will be found between B and B + d7 when it is multiplied by dB.

The target, or targets, may also be described by a matrix,

most of whose elements are zero. It is assumed that each target is

sufficiently small, so that it can occupy only one resolution cell. This

matrix is designated as

T = {t I , t 2 . . . . .. . . . . tn (4.3)

It is also necessary to assign a probability of target presence

and a density function for target amplitude when a target is present.

Hence, let P0 be the a priori probability that no target is present, and

PI be the a priori probability that one or more targets are present. As

will be seen later, it is often difficult to say precisely what these

probabilities are. Since these probabilities are mutually exclusive

PI + P  = 1 (4.4)

The probability density function for target amplitude is designated as

wl(T) and normalized so that

Jwl(J) dT = 1 (4.5)

Thus, the a priori probability density function associated with the

target matrix is

p(T) = P 0 (T-0) + P1 wl () (4.6)
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where

I for T = 0

(T-0) = (4.7)

0 for T 0

The observed resultant signal is in general some combination

of the background signal and the target signal. The background and

target signals are assumed to be statistically independent.* For most

syst.ams the target and background signals are combined by simple addition,

but it is not necessary to make this assumption for the general derivation

being considered.

Let the observed resultant signal be designated by a row matrix

also, so that

S= s I , s 2,  ., sJn (4.8)

There are conceivable conditions where background and target signals

are not statistically independent. For example, launching might be

difficult under weather conditions that produce high backgrounds.

If the target is a true point source, the assumption of additivity is

exact. Any real target will, however, obscure a portion of the back-

ground. Thus, a substitutive rule will be used in a later section

since the target image for systems of interest will be on the order of

a resolution element in size. This approximation also permits a simpli-

fication in the mathematics.
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Associated with this matrix are two conditional probability density

functions, p ( IT h 0) and p (S IT = 0). The first probability density

function is the probability that if a target signal is present and has

a particular value T then the background signal will be such as to give

a resultant signal which lies between S and S + dS. The second proba-

bility density function, namely p (S IT = 0), is the probability that

if a target signal is absent then the resultant signal lies between

S and S + d7?. This latter density function is identical with the proba-

bility density function of the background, w0 (TS).

Although the probability density functions introduced in the

preceding paragraph appear simple at first sight, they contain a wealth

of information from the 2n random variables of background and target.

The practical description of the background in terms of such probabilities

may not be possible at all as will be seen in Section 4.3 where this

subject is again taken up. Despite the complexity of these conditional

probability density functions, they enable the definition of various

kinds of averages which are practical to use. Also, restriction of the

number of variables permits the practical applications of these functions.

In any case, this framework, while complicated, is necessary to describe

the problem carefully and does yield suitable quantities for practical use.

b. Decision Rules and Cost Functions

The decision operation, which decides for or against alarm

activation, is designated by 8(§, Q ). The matrix S is the measure-

ment space and Q is some selected subset. For a single threshold

decision, the specification of Q divides the measurement space into two

regions. All - not contained in Q lead to a decision of no target

present, and 9 lying within Q lead to a decision that a target signal

is present. Thus

1 for S r_

0 for SOO (4.9)
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The sub-space over which we have elected to decide for target

presence may be found by integration of $(§, Q ) over all S. Similarly,

the sub-space over which we decide for target absence is the integral of

(1 - 8(9Q) over all I

Finally, it is necessary to assign evaluation or cost and gain

functions to the four possible outcomes which are the result of time,

target condition and the applied decision rule. The possible outcomes

and heir associated cost functions C (Y, 6 ) are:

Decision for target absent when target is absent.

C (T =, 6=0) = C

Decision for target present when target is actually absent.

C (T = 0, 1= ) = Cf

Decision for target absent when target is actually present (4.10)

C ( 0, 8=0) =c m

Decision for target present when it is present.

C (Y N 0, 6= 1) = Cd

The costs associated with the correct decisions are C and
0

Cd, where C0 is the cost of deciding target absence correctly and Cd

is the cost of deciding for target presence correctly. It will be seen

that these particular costs are actually gains and so will be negative

numbers or zero. The costs associated with incorrect decisions are

positive costs and are Cf and Cm, costs of false alarm and of target

miss, respectively. The costs Cf and Cm will usually be assigned large

values relative to the magnitudes of Cd and Co.
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Since the occurrence of various cost values is random, it is

appropriate to find the expected value of the cost, E < C (T, 8)>

C = E <C (T, 6 )> = E < + E <Cf> + E /Cm>+ E <Cd> (4.11)

It is readily seen that

E <o>= Co P1 )p ( 0) (1 - (,Q)'d-S (4.12)

E <Cf > = Cf Po (I= 0) &(S, ) ds (4.13)

E <Cm > = CmPiJ fP (SIT 14 ) (1- (,) d~s (4.14)

E <Cd> = Cd P f p  ( IT I 0) S, Q ) ds (4.15)

from which

P 1 Cm + P0 C0 + i (-S, ) Pop(S IT = 0) (Cf-Co) (4.16)

+ Plp (SIT 0) (Cd - C). d

In deriving Eq. (4.16) the normalizing relationships

p (SIT =0) dS = (4.17)

and

J p Y= 0) d9 = (4.18)

have been used. The expected cost may also be written in terms of the

conditional probability of false alarm, Pf. and the conditional probability

of detection, Pd' defined respectively by

Pf = J 6(Sfl) p (-S IT =  ) ds (4.19)
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and

Pd S(S' ) p (S IT i 0) d S (4.20)

In terms of Pf and Pd the expected cost is

C= PI Cm + P0 Co + P o Pf (Cf-C0 ) + P1 Pd (Cd-Cm) (4.21)

The general design criterion may now be stated. The optimum

system will be that system whose parameters produce a minimum for the

expected cost. In other words, the decision rule (Q) must be

chosen so as to minimize the expected cost. The appropriate decision

rule is that 8 (", 0 ) zero when the integrand of Eq. (4.16) is positive

and unity when the integrand is negative, that is
C C- C Pf o o

0 when /\' C - Cd PI

, 69, m d 1 (4.22)

1 wheni > Cf-C P
Cm- Cd PI

where the likelihood ratio , is defined as

= ( LL - 0) (4.23)

p 0 T = 0)

The actual application of Eqs. (4.22) and (4.23) clearly depends upon

having some data with respect to cost values and a priori probabilities.

Thus, this result has somewhat limited practical scope. One way to get

around this is to use a partial minimization of the expected cost

Eq. (4.21). This leads naturally to the Neyman-Pearson criterion if we

minimize the last term on the right of Eq. (4.21) as we shall see.
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According to the Neyman-Pearson criterion,4 a decision for

target presence is made when the ratio Z/3, defined by Eq. (4.23) exceeds

some particular value, say K, for the observed S. When for some5,

falls below K, then a decision for target absence is made. The value of

K is selected to give a preassigned false alarm rate. This amounts to

a specification of Cf. For the Neyman-Pearson decision rule, the decision

operator is then

F when >/ K

NP~ ~ 0 when AL. < K (.4

A unique decision operator is not specified since K may have any desired

value.

It is of interest to compare Eqs. (4.22) and (4.23) with the

Neyman-Pearson criterion for selecting the decision rule. In the previous

case a definite value of A. is specified when the costs and a priori

probabilities are known. Under the Neyman-Pearson criterion, however,

the threshold is arbitrary.

The following argument indicates that the Neyman-Pearson

criterion is a first step towards minimizing the expected cost. If the

expected cost is expressed as in Eq. (4.21), a possible approach to mini-

mizing the cost would be to optimize one of the four terms on the right

side while holding the other three constant. The only control permitted

is over the terms involving Pf and Pd" Under the Neyman-Pearson criterion,

the choice of K fixes the value of Pf. Since (Cd-Cm) is always a negative

quantity, a partially optimum system will be that for which Pd is a maxi-

mum so that the cost is minimized. This procedure corresponds precisely

to the Neyman-Pearson criterion.
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The great virtue of the Neyman-Pearson criterion lies in the

fact that it enables some control over the cost without requiring a speci-

fication of the costs or a priori probabilities. This advantage is to

some extent illusory, however, since it is not possible using this criterion

to know what the actual cost is. Furthermore, since costs are not evaluated,

the actual gain achieved by using the optimum system rather than some

compromise system cannot be determined.

c. Single Threshold Criterion

Another decision criterion often used is the single signal threshold

rule. Under this rule a decision for target presence is made when 1 exceeds

some threshold value, say Sg. The decision operator in this case is

f 1 when S > S

(S, )(4.25)

0 when S < 0

This criterion is the same as the Neyman-Pearson criterion when A is

a monotonic function of S in which case the Neyman-Pearson condition

separates the signal space into just two regions. However, if for a given

value of A there correspond several values of 5, then no single signal

threshold can satisfy the Neyman-Pearson minimization.

An example will be discussed to demonstrate the relation between

the Neyman-Pearson condition and the single threshold condition. Suppose

that the background probability density function, wo(f) is bimodal with

most clouds providing radiance less than the target radiance and a very

few clouds producing radiances much in excess of the target radiance values.

Note that these latter radiances correspond to small values of the proba-

bility density function. The Neyman-Pearson condition will require two

signal thresholds: one which separates the low cloud radiances from the
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range of target radiances and a second one which separates the high cloud

radiances from the target range. In this manner both low and excessively

high cloud signals will be excluded from the Q subspace. However, the

region of high radiances which is excluded by the upper signal threshold

will not affect system performance significantly provided the probability

of occurrence of such clouds is very small, i.e., their contribution to

/ p (T IT = 0) d-9 is small. For all practical purposes, then, a single

signal threshold would suffice. This is expected to be the case for

missile-launch detection systems. Thus, the establishment of a single

signal threshold for practical systems is equivalent to design according

to the Neyman-Pearson criterion provided that the target and cloud distri-

butions are well separated and most backgrounds are in one region of the

signal space.

Other decision criteria are possible such as for systems using

correlation. For example, a decision for target presence might be made

only when the threshold for a single detector is exceeded and the signals

from adjacent detectors remain below the signal threshold. In this way

discrimination against large reflecting clouds can be achieved.

If the detection system is equipped with data storage capability,

the possibility of reserving a decision until more data is accumulated is

permitted.*

d. A Priori Probabilities and Costs

As already mentioned, the Neyman-Pearson approach is the only

approach which is reasonably general yet independent of a priori proba-

bilities and cost assignments. In order to use the more general minimum

cost criterion of Eq. (4.22) these probabilities and costs must be known

or estimated. It might prove instructive to examine what is involved in

estimating these quantities.

In this case, Wald's sequential criterion might be useful.
5
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Since the probability of any enemy ICBM attack varies from day

j to day as the international situation changes, the estimates of P1 must

be updated since PI is the a priori probability of target presence in the

interval to and to + dt. Other conditions which are usually steady

relative to the height of internal tension feed into the estimates of P1

such as the number of enemy missiles on launch pads and their probable

targets. Various governmental, military, and intelligence agencies make

estimates of the probdbility of an enemy attack from which it might be

possible to derive the probability of target presence in the field of

view of the detection system, P1. Since much subjectivity goes into these

estimates, their reliability may be poor. So far no test cases have

occurred to verify the estimates, although past experience and the absence

of an attack indicate that P1 is usually considerably smaller than unity.

In view of the questionable reliability of estimates of P1 any design

criterion which is independent of a knowledge of PI is favored.

The cost functions of Eq. (4.10) are even more difficult to

estimate. In any discussion of costs of errors of a surveillance system,

complicated interactions of the surveillance system with other parts of

the defense system have to be considered which causes difficulty in such

a general discussion unless the rules of the defense game are known. What

is the cost of a detection miss for one single element in an extensive

surveillance system consisting of warning radars as well as satellite

infrared systems? Perhaps the cost is that of not having the advantage

of an earliest possible warning. Thus, it might be inversely proportional

to the extent of build-up of the retaliatory forces actually achieved at

the moment the attacking warheads reach their targets. Or perhaps it is

a function of the warning time actually achieved by the overall system

so that the cost of a miss depends upon the functioning of the rest of

the surveillance system.
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What is the cost of a false alarm? Does it amount to the cost

of scrambling SAC and initiating the procedure for additional retaliation?

Does it also depend upon the lack of credibility in the warning provided

by the rest of the surveillance system?

One might be permitted to say that

Cm > Cf

if the assumption that retaliation is not actually ordered until one or

more enemy hits have been experienced is allowed. In this case, a false

alarm will initiate an alert and also will be checked out by future experi-

ence, but a miss may mean the loss of the advantage of an alert and possibly

of some of the retaliatory forces as well.

So far the decision criteria for an optimum system and for other

systems have been discussed. The assumption which is made is that the

system which uses the minimum cost decision rule would be the optimum system.

Since it is difficult, if not impossible, to know P1 and the costs, it

will not always be possible to discover the optimum detection system by

applying the optimum decision rule design criterion. In fact, one would

probably be satisfied with the best workable system of several possible

choices. What is needed, then, is some measure of individual system per-

formance which may be used to compare different systems and which will

permit, in practice, the selection of the best system. Such a performance

measure should be derivable from the Neyman-Pearson criterion or the

essentially equivalent single signal threshold criterion. One usable

performance criterion is discussed in the following section.

In summary of the previous subsections, a general performance

criteria has been derived in the form of a decision rule which minimizes

the expected cost. This criterion is shown to be of limited usefulness

since it is required to know the a priori probability of a target occurrence
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and cost functions assigned to the various outcomes. The Neyman-Pearson

criterion is shown to be free of these limitations and yet to retain

much of the rigor of the more general criterion. Finally, it is argued

that in most cases the Neyman-Pearson criterion corresponds to the simple

decision criterion of setting a single signal threshold.

e. A Usuable Comparison Criterion

It is desired to develop an analytical measure of detection

system performance which may be used to compare different systems. The

various systems will differ in their decision rules since the decision

rule used reflects the type of discrimination scheme of a particular system.

Methods for achieving background discrimination are briefly:

(1) Spatial discrimination by using small instantaneous fields

of view. Thus, if the resolution element (an individual

detector of an array) is on the order of the target size,

the field of extensive backgrounds is reduced. This

method has been considered in the single scanning detector.

(2) Spatial discrimination by using inherent background patterns

and correlations. The fact that the spatial frequencies

of cloud radiance differ from that of the target (essentially

a point source) might be utilized for discrimination. Also,

correlations due to regularities in cloud size and distri-

bution may permit discrimination. An example has been

considered for clouds several resolution elements wide in

which signals from adjacent elements are compared and no

alarm is sounded if both signals exceed the threshold.

(3) Spectral discrimination by choosing the most appropriate

spectral region. It appears that the 4.3 micron band

offers no great advantage over the 2.7 micron region, how-

ever.
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(4) Spectral discrimination by examining spectral line shapes

or by comparing fluctuations in two or more different

spectral regions.

(5) Temporal discrimination by determining the time history

of a potential alarm radiance. Target motion or self

modulation may reveal its true identity.

(6) Discrimination accomplished by limiting the chances of

observing a severe background. Thus, a reduction in

coverage say by limiting the scan to large angles

relative to the sun position to reduce seeing bad for-

ward scattering or limiting the scan to regions near

and above the horizon to take advantage of transmissivity

losses might be useful.

(7) Polarization discrimination by recognizing that radiation

reflected from clouds may be polarized differently than

target emission.

A particular system may perform measurements upon both target

and background signals. In general, a system may be required to:

(1) Detect the presence of a completely known signal in the

presence of background noise.

(2) Detect the presence of an incompletely known signal.

(3) Detect an incompletely known signal and measure its

unknown characteristics.

As a result, the decision rule may become an involved function

of various system operations.

The gain functions associated with the correct decisions (Cd and C0)

will be neglected and the system which produces fewest errors of target miss

variety for a given rate of false alarm error will be considered the best
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system,which is in accordance with the Neyman-Pearson criterion. It is

assumed that a tolerable false alarm rate, represented by Pf, may be

assigned. For comparison purposes, systems will be examined when their

false alarm rates are identical. Then the system with the smallest condi-

tional probability of miss is the correct choice. Since

PM- f P( IT 4V 0 (1. - 'S SQ ) ) dS - 1 - Pd (4.26)

this is the same decision rule for the best system as selecting the

system with the largest Pd from all systems having equal Pf.

The particular system which is best for one value of Pf may

not be the best at all other values of Pf. Thus, curves of Pd versus

Pf for various systems may cross at some point,and the order of best per-

formance may become inverted.

It is necessary at this point to consider how the sn signals

from the n sensors are combined to yield the total signal S. The decision

operator will be determined by this operation. For example, all sn

signals might be summed and then passed through a signal threshold device,

or each s could be individually passed through a threshold device before

combination. Various relationships between the individual a signalsn

might be required as a condition for decision making. One such relation-

ship could be a statistical correlation and certain restrictions upon

the degree of correlation could make up a decision rule. The procedure

whereby the sn signals are processed to give the resultant 1 which is

involved in the decision operator will be critical and will be the feature

of the various systems which may be examined.

The decision operator must be modified to permit the inclusion

of the procedure for combining the sn signals which, in turn, depends upon

the discrimination scheme. Call this decision operator &(!(si), .
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Certain simplifications may be possible in the expansions of

the conditional probabilities p(§ IT - 0) and p(§ IT 4 0) appearing in

the general equations for Pf and Pd (Eqs. (4.19) and (4.20)). For ex-

ample, false alarms result only when an alarm is given but no target is

present. However, a target may be present in the ith signal and be

missed, yet an alarm signal sounded due to some other s satisfying the

alarm condition even though s contains no target signal. This fortuitous

alarm will be an extremely rare event since it requires both that a target

be missed, which for most systems is very unlikely, together with a

false alarm event, which is also rare. Thus terms in p(§ I = 0) of the

sort p(si4 Qi, sic Q. it i  0, t. = 0) may be neglected. Here

f. is the subspace of all s. for which a decision for target presence
is made.

An alarm should be given when one or more targets appear.

Because of the spacing of missile launches in both time and space, it is

unlikely that more than one target will be detected at any one instant

although the probability does increase as the spatial separation of the

ith and jth sensors becomes larger. It is probably quite unlikely that

two missiles will be launched simultaneously side by side so that target

signals appear in adjacent sensor signals. Thus, terms in the expansion

of p(S IT 0 0) of the sort p(siCQ i' s i+lCQi+l Iti 40, ti+ I 40) may

be neglected.

The decision rule will determine the detailed form of Eqs. (4.19)

and (4.20). For example, suppose a system of two sensors, sI and s2 and

a decision rule

f 1 when sI ' s

(, ) = 1 when s 2 > s0 (4.27)

0 when s 1 , s0 ; s2 ' se
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Then '.

( Vsi 2 (4.28)

L~= ti) t 2
and T=0 means t1 I 0 and t 2 =0. No assumption about the correlation

between s I and s 2 need be made since the result may be written for the

general case. Then P fis

P f Jj P(sls 2 it1 I 0, t 2 = 0) 8(sls2 ; s ds 1 ds 2

00 coo(4.29)

f= ~ s It, =0) P(s21 t2 = 0,S ds I ds 2

Similarly we can find the detailed expression for P d* T h4 0 means that

(t 1 4: 0, t 2 = 0); (t1 = 0$ t 2 A 0), or (t I t 0, t 2I)

Thus, P d becomes

Pd ff~~ 1  t1  0o t 2 = 0) +

p(s1, s 2 ti 0 t 2 i 0) + (4.30)

P~sl)s 2 t 0' 2 o40 (5l~s 2 ;se ds Ids2

where

P~i j i it h k 0, tj M 0)-

p(s.i Iti *0) p(s1 It. k 0, t 1  0, s 4.1

and

p(ss 1 I it 1 0, t~ 0)=

(4.32)
p(s~ il ti 0) p(s1 it. 0, t A 0, d
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Eqs. (4.29) and (4.30) above take into account correlations between back-

ground signals, b and b and correlations such as the probability of a

double target (ti 4 0, t. k 0).

Finally, it is necessary to specify how bi and t. components

add to yield the resultant s. . If
1

s1 = b. + t. (4.33)

and

P(si/t i - 0) = w° (s.) (4.34)

then

P(Si/t. J 0)= Jw (bi) wI (s i - bi) db.
f (4.35)

-f wi (ti) w° (si - ti) dt.

Under certain conditions, the convolution integrals above may be simplified

by approximation if some of the properties of w (b.) and w1 (ti) are known.

For example, if the probability density function of background radiances

is less than some small fraction of the comparable missile radiance densities,

then a good approximation is

w o (s i ) w1 (s i  b i ) db i  w, (si). (4.36)

It is permissible to use this approximation for most of the

background distributions considered here. Note finally that the background

must be represented as an n-dimensional joint probability density function

given by Eq. (4.37)

wo (B)= P (b) p (b2 Ibl) p (b3  bl, b 2 ) p (b bl, b2 . ,bn. I )

It is seen, then, that the approach used here determines how the background

is to be described. Unfortunately, for correlated backgrounds with n any
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larger than 2 or perhaps 3 or 4, the practical measurement and determination

of such joint probability density functions becomes well nigh impossible.

The following section considers this problem in more detail and typical

probability density functions for non-Gaussian distributions are presented.

4.3 PROBABILITY DENSITY FUNCTIONS

a. Properties of Correlated Joint Density Functions

In Section 4.2 a the nomenclature for n-dimensional probability

density functions was introduced for background signals, target signals,

and resultant signals. It is probably not possible to obtain these complete

joint density functions for n any larger than 3 or 4. If the n random

variables were statistically independent, the joint density function could

then be written down as

p(S) = p(sl) P(s 2 ) . . . . P(sn) (4.38)

However, these individual random variables are not statistically independent

and Eq. (4.38) cannot be used to represent the joint probability density

with good accuracy. Eq. (4.37) might be used if corrections for random

variable correlation could be incorporated.

Suppose a joint probability density function exists for two

correlated random variables si and s . designated by p(s i s.). Let s.

and s i have individual probability density functions p(si) and p(s.),

respectively. Also, let p(si Isj) and p(sj Isi) be corresponding condi-

tional probability density functions for s. given s. and s. given s.,

respectively. Then

P(Si, s.) = p(sd j isi = p(s ) p(s i I s ) (4.39)
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Suppose next that the correlation between si and sJ is perfect

so that the correlation coefficient J1 is unity. Then p(si, s )

becomes

p(s i , s.) p(si) S(s i - s.) p(s.) S(sj-s.) (4.40)

where

6 (s i - s.) and 6(s. - s.) are delta functions

E(s i - s.) 5(s. - s.) = (4.41)

0 si { 

Finally suppose the two random variables are statistically

independent so f = 0. Then p(si , s.) is given by Eq. (4.42) as

P(si, s.) = p(si) p(s) (4.42)

By comparison of Eqs. (4.41) and (4.42) with the general form

of Eq. (4.39), it will be seen that the conditional probabilities,

P(s Is) and p(s.I si), range in functional structure from delta functions

for perfect correlation to the individual density functions for no correlation.

Thus, for some intermediate value of ), the delta function in Eq. (4.40)

must be replaced by a function broader in (si - s.) whose dependence upon

the conditional variable, say in this case si, becomes less as f approaches

zero. The actual function will, in most cases, be difficult to estimate,

but the above considerations indicate something of its general form as a

function of the degree of correlation.

The n-dimensional joint probability density function, p(S),

must satisfy certain properties such as

/ p(§) dS = 1 (4.43)
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I p(S) ds .... dsnl p (sn )  (4.44)

fsf i p(S) dS =L (4.45)

fi2 p() d = + 2 (4.46)

si  j (S) dS= C(+j 2 (4.47)

where

a ii = E <(si "LL) ) 2> (4.48)

and

Xij = E <(s, - jt ) (s. - . ) > (4.49)

are expectation values. Note that p(S) defined by Eq. (4.38) satisfies

all these properties except Eq. (4.49) unless C.. = 0 that is, unless

there is no correlation.

It may in some instances be possible to approximate p(9) when

correlation is involved by

p(S) = P(sl) P(s 2) . . . P(sn ) + f(S) (4.50)

where f(S) must satisfy the properties

f f S) d S = 0 (4.51)

(. f(S) ds 1 dsn-1 = 0 (4.52)

s i f(i) d7s = 0 (4.53)

Jsi2 f(S) dS = 0 (4.54)
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f. s. f(9) dS - 0ij (4.55)

The problem reduces to finding the appropriate form for f(S). In general,

the approximation for p(S) of Eq. (4.50) will not satisfy higher order

properties of the true p(S).

In summary, two approaches to approximating joint probability

density functions in the case of correlation have been suggested, namely,

coij .ct successive p(si) in Eq. (4.38) to account for the correlation

or assume independence and then make an additive correction (Eq. 4.50).

b. Deduction of Probability Density Function from Physical Models

If physical models for the background radiance and target radiance

can be derived, say from theoretical and empirical studies, how may the

required probability density functions be obtained? In general, a set of

particular conditions must hold for the production of a given radiance

value. If pi is the probability ot the occurrence of the ith condition,

and if the conditions are statistically independent, the probability of

obtaining the new radiance is

p (H) - kTi Pik (4.56)

where the sum of k is over all sets of i which separately produce H.

Although H is a function of all i, each pi will be determined by the

specification of H and the particular set k giving rise to H. Finally,

if the p, are not statistically independent, a convolution of probabilities

will be required.

In actual practice, p(H) will probably have to be obtained from

the physical model by Monte Carlo computer technique. It may also be

easier to obtain an estimated cumulative distribution function, P (H) and

then differentiate with respect to H to obtain p(H).
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At this point another difficulty arises in the practical applica-

tion of the method for assessing system performance. It has been shown

how the probability density functions for model cloud background radiances

may be obtained in principle. However, Eqs. (4.29) and (4.30) show that

the probability density function of the signal as it appears to the

decision operation is what is actually required. The cloud radiance is

converted by the sensor to a voltage. At the same time some modification

of the original radiance probability density function may occur since the

sensor may not be truly linear for all radiance values or previous signals

may have an effect. Also, the sensor may introduce noise of its own which

definitely changes the density function. As the signal processing proceeds,

the linearity, noise, and bandwidths of preamplifiers will further change

the signal distribution. The signal presented to the decision operation

device will represent possibly a much different probability density function.

Unless these modifications of the original signal are well understood,

it will not be possible to relate the background densities to system per-

formance. We will show immediately below what simplifying assumptions may

be made about the system to remove this difficulty.

Let the input irradiance to the ith sensor be Hi(9 , 0). Because

of the scanning law and sensor motion

9 = e (t)
(4.57)

0 0 (t)

so that

Hi (9, 0) = Hi (t) (4.58)

It is assumed that the probability density function p(Hi) is known and
that it is required to obtain p(s.).

The output signal at time t corresponding to Hi(t) is si(t).

However, contributions to si(t) result not only from the instantaneous
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value of Hi (t) but also from the past values of Hi (t). This is due to
the system response function and its inherent rise time and causes the

difficulty in converting p(Hi) to P(si). Another source of difficulty

is the noise introduced by the system. However, we assume that the

internal system noise is sufficiently low so as to be neglected without

appreciable error.

The way in which the history of H. is taken into account is to1

de ile a system impulse response function, k(t), which when convoluted

with Hi gives si, i.e.

si(t) = ji (t -A ) k (A) d2 . (4.59)

However, this simple integral gives the correct signal only for linear

systems. Higher order integral equations are required for other types

of signal processing. In our case, we are interested only in the signal

processing which occurs up to the input to the decision operator, and

this processing is, in many cases, closely linear.

Eq. (4.59) relates individual values of H. occurring over a
th1

sampling time interval of the i sensor to the output signal, s°.1
However, what we need is some relationship between P(Si) and p(Hi), not

between individual values of the random variables. In general, such

a relationship cannot be found analytically except for certain special

or simple cases such as Gaussian background distributions or for sensors

with sufficiently rapid rise times.

Suppose the impulse response function delays the signal by an

amount t but otherwise doesn't change the signal. Such a function is

represented by the delta function

E(t-t O)
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For this case

s. (t) = Hi (to) (4.60)

and the probability density functions are identical, i.e.,

p(Hi) = p(si) (4.61)

Finally, if Hi (t) is a slowly varying function of time relative

to Lhe time constant of the detection system, i.e., Hi(t) does not change

appreciably over a time interval from t -T to t + r where 7 is the

time constant of the system, then

si(t) - Hi(t) f k () dA (4.62)

0

The problem of obtaining p(si) vanishes for this special case. Actually,

all that is required is that the relationship between si(t) and Hi(t)

be monotonic so that a single value of si(t) exists for a given Hi(t).

Then, again, Eq. (4.61) is valid.

For a high frequency cutoff filter, the transfer function is

K +K j WT (4.63)

where r is the characteristic response time of the system. The Fourier

transform
Cya

i t) K (OJ) e j W t d c) (4.64)

of this function generates the impulse response function

Ke - t /  t 0

k(t) = (4.65)

0 t 0
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Let us Fourier analyze what happens to the signal as it is

processed. The Fourier transform of the input signal is

00
H1(t) = - )- (',-))e 3  dW (4.66)

H(t)e-j t d (4.67)

0

Eq. (4.59) becomes upon substitution

si(t) 1II- H(t- W) (')eWA dud,.

W- ( v-1)d H(t- A)eJUkd- (4.68)

1 j da t f H(t- L) e- j W (t-;) d ;A=-- - K (w)e j  dWt

1< i t

For K (W) given by Eq. (4.63) the product *( (w) /-(w) which is

effectively the Fourier transform of si (t) will be small for high fre-

quencies (large values of 4). To see this, expand * (aj)

(g) = N (0) + wh (0) + . #"(0) (4.69)
2!

n (n)
+....... n (0)
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For large C , multiplication by K (CO) effectively reduces the power
of L4) in each term and the new series converges more rapidly as

increases in size than the original.

If the loss of high frequency components of H.(t) is small

compared to the mean value of Hi(t), then the radiance probability density

function will closely approximate the signal density function. If, how-

ever, the high frequency losses are high, the probability density function

wiL be appreciably altered.

If k(t) is not an extremely narrow function of t, but, on

the other hand, is not excessively broad either, then an approximation

may be used with good results. Thus for each si(t) given by Eq. (4.59)

there will correspond an interval of input signals (Hi, Hi + SHi).

The width of this interval, 8Hi, depends upon the width of the weighting

function, k(t). An average probability density, pave' is assigned over

this interval. Then, approximately

p(Si) ds i Pave SH. (4.70)

The wider k(t) the poorer will be the approximation of Eq. (4.70).

Another point of view with regard to the problem of relating

input and output probability density functions is simply that, when the

input is a random variable rather than a time variable of known analytic

form, no Fourier transform exists for such a variable. As a consequence,

the modification of the input density by the system cannot be evaluated

unless the modification is negligible or slight so that the transformation

of the random variable reduces to a simple algebraic operation. In order

to handle this problem when the optimum linear filter is considered in

Section 4.6, the random functions are converted to autocorrelation functions

(with consequent loss of phase information) for which transformations are

possible.
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c. Typical Background Distributions

Next, consider some typical examples of non-Gaussian background

distributions. Such distributions are required in order to account for

radiance from several different sources. For example, partial cloud

cover gives rise to a bimodal distribution of radiance; one mode is cen-

tered around the clear sky mean and the other around the cloud mean.

Clouds at two different levels may be responsible for a bimodal distri-

bu:,!n because of the differing transmissivity of the paths to and from

the clouds.

Some properties of bimodal noise, each mode being represented

by a Gaussian function, are examined below. The underlying assumptions are:

(1) Noise and signal are uncorrelated from one resolution

element to the next.

(2) Noise and signal are additive.

(3) A decision is made that signal is present if t + b > sE

or absent if t + b < s8 where t and b are signal

and noise voltages at the output of the radiation

detector and s is a threshold voltage.

(4) The noise probability density function is

p(b)db = I - exp (b- )2/2 O-12

(4.71)

+ - 2 (exp -(b -a 2)2/2 0- 2
2  J db

where the aI and 22 are called weights of the distribution. They might

physically represent the probabilities of the presence of high or low

4-33



clouds. Il and 42 are called modes of the distribution and 9L2 - 9 1

is called the spacing of the distribution. Physically /I, and )U2 might

represent the mean radiance of high and low clouds multiplied by the

responsivity of the sensor, the size of the aperture stop and the subtend

of the field stop. O-1i2 and ' 22 are called the variances of the distri-

bution. Physically they might represent the variance in radiance of high

and low clouds multiplied by the same factors as 4i 1 and 02"

The false alarm probability and signal detection probability

have been evaluated under the five assumptions by integrating numerically the

noise density function and the signal plus noise density function. Some

results for the false alarm probability are shown in Figures 4.1 through 4.5.

These figures show false alarm probability plotted horizontally from right

to left against threshold voltage plotted vertically. The graphs are on

"probability paper" on which a Gaussian distribution plots as a straight line.

Figure 4.1 shows the effect of varying the weights of the distri-

bution from a2 = 0.5 to a2 = 0.01. Figure 4.6 shows a graph of the proba-

bility density function for the extreme case aI = 0.99, a2 = 0.01.

Figure 4.1 also shows the false alarm probability characteristics for equiva-

lent Gaussian distributions -- that is, the false alarm characteristics

that would be anticipated by a system designer who had measured the mean

and variance of the background noise and had fitted it with a Gaussian

distribution. These characteristics are, of course, straight lines.

The signal detection probability characteristics under these

simple assumptions are obtained by displacing the false alarm curves of

Figures 4.1 through 4.5 vertically by the signal amplitude in the same

units as the threshold scale. In Figures 4.2 through 4.4, the weights are

a1 = 0.9 and a2 = 0.1.

Figure 4.2 shows the effect of varying the spacing of the two

modes by holding i fixed and progressively decreasing 'U2" As the

spacing decreases the characteristic approaches Gaussian behavior.
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Figure 4.3 shows the effect of increasing the width of variances

of the second term. Figure 4.4 shows the effect of increasing the variance

of the first term. Figure 4.5 shows the false alarm characteristics of

five cases of rather closely spaced trimodal noise.

In general, it is seen that the false alarm characteristic of

a simple "independent look" system operating against bimodal noise can

be substantially different from the characteristic expected from a similar

system operating against noise which has been assumed to be Gaussian even

in the case that the second peak is small enough that it might well be

missed in a background measurement. The bimodal characteristics approach

the characteristic of the high mode at very high thresholds and the low

mode at very low thresholds. Between these two extremes is a transition

hump. The magnitude of the hump decreases as the weight of either mode

is decreased or as the spacing of the modes is decreased.

Figure 4.7 shows another multimodal background radiance proba-

bility density function. The low radiance, due to atmospheric scattering,

blackbody radiation, and reflection from very low clouds, is represented

by a delta function centered at or near the origin. The medium radiance,

due to possible cloud cover at the tropopause, and the high radiance, due

to occasional very high altitude clouds, are represented by two Gaussian

functions. This distribution differs from the above bimodal cases in

that the Gaussian functions have much larger variances relative to the

mean and in that the bulk of the background radiance is contained at low

radiance levels (the delta function). The two Gaussian functions then

represent the structure of the high radiance tail of the total background

probability density function. This is the important region of the total

density function since it is the high background radiances which must be

distinguished from targets. The equation plotted in Figure 4.7 is

4-41



0

0

0 2 4 6 8 0 12 14 16 18 20 22 24 261SB X 106 WATTS/CM2/STER S12252

} FIGURE 4. 7 BACKGROUND RADIANCE PROBABILITY DENSITY FUNCTION

4-42



W (b) a 
e (b- A) 2/2 -12

0ob = o (b--O) + -o, e

(4.72)

+ a 2  -(b-A )2/22

e 77r o-2

where

a = 0.94
0

aI = 0.05

a2 = 0.01

0 = 10 watt/cm2 ster

112 = = 10 watt/cm 2 ster
2

Such a background radiance distribution may be related to a

distribution of cloud heights since

p(h) = w (b) db bf dt (4.73)

where p(h) is the probability of a cloud at an altitude between h and

h + dh, fo = 1/cos i + 1/cos e, t is the transmissivity, and dt/dh is

obtained from Table 3.2.

Under the assumption of a coplanar case (fo = const.), a maxi-

mum overall radiance of 2.6 x 10-5 watt/cm 2 ster (see Section 2, Fig. 2.5),

(i = 750, and 9 = 37 °  Fig. 4.8)is obtained for the cloud height distri-

'bution. The two peaks shown correspond to altitudes of 16 Ian and 28 km.

The probability density function, p(h), has been normalized to unity.

The low altitude distribution is not shown in detail, but there is a

95% probability of having no cloud above 12 km altitude (26 kft).
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4.4 SINGLE SENSOR

Consider, now, a detection system consisting of a single

detector element and having no memory or correlator. The response function

will be assumed to be narrow so that for all practical purposes the proba-

bility density functions of the background or target radiances are also

good approximations of w0 (b) and w1 (t), respectively. Let the decision

for alarm be the condition that the total received signal, s, exceed

a threshold level, S In this simple case, Pf is given by Eq. (4.19)

in which

~ (4.74)

Y = 0 means t - 0, and

$( ,Q) is given by Eq. (4.25) so that Eq. (4.19) reduces to

Pf { p(s it = 0) ds (4.75)

se

Similarly, Pd is

=f p(s I t h 0) ds (4.76)

e
Using Eqs. (4.34), (4.35) and (4.36) results in

Pf = wo(s) ds (4.77)

e

= wl (s) ds (4.78)

e
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The specification of Pf and wo(s) determines s0 according

to Eq. (4.77). This value together with w1 (s) then determines Pd for

the case of the single sensor (Eq. (4.78)). Figure 4.9 shows Pf for

wo(s) given by Figure 4.7. Pd may be obtained for any desired value

of s0 if the target probability density function is available.

If we now compare the result of our performance prediction

(Pd for a given Pf) with the prediction which would have resulted from

ai. ssumption of a purely Gaussian radiance distribution matched to

the actual distribution (or simply use a minimum root-mean-square noise

criterion), it is readily apparent that the structure of the high

radiance tail of an actual distribution has a pronounced affect. (See

also the discussion of Section 4.3 c and Fig. 4.1). The structure of

the high radiance tail does have an affect upon the calculated Pf

which is essentially ignored under the r.m.s. approach.

If w (s) and w1 (s) are known, another way to find the best
s 0 0

s for the single sensor is to choose it such that the ratio of Pd/
obtained from Eqs. (4.77) and (4.78) is a maximum. This value of

SW, se,m, is found by solving

d w1 (s) 0 (4.79)
ds f

e e ws o(S) ds )
or

W (son m) Pd (S0,m) (4.80)

wo(so0m) Pf (s o'm
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4.5 CORRELATED SENSOR OUTPUTS

Substantial gains in system performance are achieved when the

outputs of individual sensors are correlated. Suppose a detection system

consisting of two adjacent sensors. The decision rule is: signals from

each of the sensors are compared. No alarm is given if the signals from

each one exceed a threshold. An alarm is sounded if the signal from

either one exceeds the threshold while the signal from the adjacent sensor

do, not. Finally, no alarm is given if the signals from each sensor

individually are below the threshold.

A false alarm may well be the result of two erroneous outcomes.

The signal from sensor #1 may exceed the threshold while #2 remains below,

or vice versa. Since the cloud image will almost always be much larger

than a single sensor resolution element, it is unlikely that one sensor

will view an infrared reflecting cloud while the other does not. Thus,

the probability of false alarm is reduced. Note finally, that the

occurrence of the two targets in adjacent resolution elements is assumed

to be extremely rare and so is neglected.

The decision rule is

I when s >9; s2 .e

I(SQ) 1 when s2 > se; '1 s. (4.81)

0 when s I > s.; s 2  s s

0 when s 1 -s.; 2 s.

The assumptions made so far may be summarized as follows:
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S tl s2 b2 + t 2

(s i = 0)

S (s i  t i 'F 0) =e t i  (4.82)

T = 0 0 (t. = 0, t 2  0)

4 0 a (t i  0, t. =0) or (t i h 0, t. 0)

P (t i  0 0, t. 0) 0

Then

p(S IT = 0) (I' s 2 tl = 0, t 2  0) (4.83)

P(Sl j t i  0) P(s21 t I = 0, t 2 
= 0, s1 )

Also

p(S IY 4 0) p(s I, s2 t I P 0, t 2 = 0) (4.84)

+ p(S1, 2  tl = 0, t2 b0) + p(sIs 2 jtl 4 0, t 2 t 0)

But it is assumed that the condition represented by the last term on

the right of Eq. (4.84) is impossible so that this term must be excluded.

Also, because of symmetry

p( -§ (T * 0) = 2 p(sI , s2 I tl 4 0, t2  = 0)
(4.85)

= 2 p(s I  tl 4 0) p(s 2 1 tl I 0, t2 = 0, slI
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The following additional assumptions are made:

P(s 2  t I k 0, t 2 
= 0, s1 ) = p(s2 It 2 = 0) (4.86)

i.e., P(s 2 I t 2 
= 0) is independent of the fact that t, I 0,

and

P(s 2 It 2 = O)%w (s 2 )

(4.87)

p(s I I tl 4 0) = w1 (Sl)

Using the above information and Eqs. (4.19) and (4.20) gives, finally,

Pf = 2 W o(S 1) p(s 2 It 2 = 0, s I = bI) ds1 ds2  (4.88)

so s2  = 0

Pd = 2 wl(S1 )W° (s) dsI ds2 (4.89)

Eqs. (4.88) and (4.89) should be compared with Eqs. (4.77) and (4.78)

for the single sensor. The modification due to correlation will be

apparent.

The ratio of P d/Pf is

f 00 
dE)

Pd - s wI(sI) ds o (s2 ) ds2  (4.90)

P4

f: )se wo (s P (2 It= 0, s = b)ds, ds2
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The term p(s2 f t2 = 0, sI =b,) cannot be simplified since it represents

the probability of finding s2 knowing that the adjacent background signal

was bI and, therefore, it contains the background correlation information.

A comparison of Eq. (4.90) with the Pd/Pf ratio for the single

sensor discussed in the previous section indicates the possibilities for

improvement of system performance using correlation techniques.

a. Improvement due to Correlation

It should be readily apparent that the evaluation of Eq. (4.90)

for any but exceptionally simple cases would be extremely difficult. How-

ever, let us restate Eq. (4.90) in simplified terms and introduce some

indicative numbers to see what degree of improvement is possible. For

the single sensor

single P (s > s t 0)

and for two sensors with correlation

P(pd~two - P (Sl > se t1  0) P (s I tl ' t 0, t2 = 0, S (

~Pf/) two P s1>sE i 0) P (s 2~ sEl J , = 0, t 2 = 0,sl

The improvement is represented by the factor

I=P (s 2 41 s. I tl O, t 2 =0, Sl) (.3I ( =4 5  0t= ~)(4.93)

P (s 4se tl 0, t 2  0, a,)

If the correlation of the background is strong, then this factor will be

appreciably greater than one. Suppose, for example, that if sI is found

to exceed se and if tI = 0 and t2 = 0 then s2 has a probability of exceeding

s of 0.9. Also, suppose that if sI is found to exceed s8 but tI  0 that

the probability that s2 will exceed s given t2 = 0 is a very small number,

S. Then the improvement is
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i- 6

1- 0.9

An example of the relationship between a simple cloud model and the

improvement will be examined. Suppose that a severe background is

represented by a cloud 10 detector elements wide. We then ask, what

is the probability that if the ith detector sees the cloud the i + 1

detector will not see the cloud. If the cloud is uniform in radiance,

then the ith detector must be viewing near an edge in order that the

i 4 1 element not view the cloud also. We estimate the chances of this

as two in ten or a probability of 0.2. In this case, the system per-

formance would be increased by a factor of 5 because of correlation.

A cloud 20 elements wide would give the improvement factor of 10

obtained above for the conditions assumed.

b. Correlation Coefficient

A useful measure of correlation is the correlation coefficipnt

which has been mentioned before. The correlation coefficient for the

simple cloud model introduced in the preceding section is derived immedi-

ately below.

The correlation coefficient is the ratio of the covariance of

two random variables to the product of the square roots of their variances.

xy = C ov (xy) (4.95)Vx = Var (X) War (y)

In terms of the joint probability density function of x, y,

p (x,y) the correlation coefficient is

J f (x - It) (y- g y) dxdy p (x,y)

= / (4.96)

J f (x- Mx)
2 p(x,y) dxdy J J (Y" gy)2 p (x,Y) dxdy
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What is the correlation coefficient corresponding to the

example of a cloud ten elements wide? We have

P = E (b. -/1) (b, + i " / ) (4.97)

E (b i -aJ)2 E (b, + i " ) 2

where E represents the expectation operator. We take for our model a

discrete distribution of b..
1

P (b.) 0.005 (4.98)

E (bi) = E (bi+l) = r i P(bi) (4.99)

1

and assume that when the cloud is observed, b. = 10-5 which exceeds s
1

and b. = 0 when the cloud is not in view. Since there are ten positions1

where this value of b..will be received
1

E (bi) /= 10 x 10-5 x .005 = 5 x 10-7 (4.100)

now

E (b i  -/2)2 = E (b) 2 = bi 2 P (bi) -a (4.101)
i1

and
x .05 x10- 1

E i P(bi) = 10 x 101 x .005 5 x (4.102)

Also,

E (b, -/1) (b, + 1- ) =E (b, + 1 ) - 2 (4.103)

and since there are nine positions for both b. and b to exceed s

E (bi b i+l+, P(bi) 9 x 10 - 5 x 10 - 5 x .005 = 4.5 x 10- 2 (4.104)
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Finally, the correlation coefficient is

/- 4.5 x 10 - 2.5 x 10 1 3  (4.105)

5 x 10
12  - 2.5 x 10

13

For a cloud five resolution elements wide, a similar calculation yields

a correlation coefficient of 0.8.

4.9 OPTIMUM LINEAR FILTER

In this section the validity of using optimum linear filters

in detection systems based on threshold decision criteria is examined.

Some simple arguments demonstrate that the criteria used in the design

of optimum linear filters do not usually produce optimum system per-

formance for threshold systems. Also, the fact that the exact form of

the target signal as a function of time is not known (the target signal

is a random variable) is demonstrated to require a completely statis-

tical approach to linear filter design.

The ideal filter would be one with no attenuation over the

frequency band occupied by the target signal and infinite attenuation

over the rest of the frequency spectra. The current problem is to decide

on the best signal treatment when the background and target spectra

overlap. Internally generated noise will be neglected since noise due to

the background signal levels and their fluctuations will exceed any

internally generated noise.

There exist several possible criteria for the design of linear

filters such as:

(1) Minimize the mean square error at the output of the filter

(maximize the fidelity of target signal reproduction).

(2) Maximize the ratio of signal power to average background

power at the output.
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For the purposes of target detection, the latter criterion is

used since this would be expected to optimize the detection sensitivity.

When it is required to retain the form of the input signal with'the best

possible fidelity of reproduction in the output, the criterion of mini-

mizing the mean square error in the signal at the output is applied. The

actual output signal usually consists of the modified input signal

together with some passed background signal. The criterion states that

the mean square of the difference between the actual output signal and

the modified ideal signal output is to be minimized. The ideal output

is obtained from a knowledge of the pure input signal or its spectral

density and the system transfer function.

An optimum linear filter may be found using either criterion

regardless of the background probability density distribution function.

The procedure invariably results in an optimum linear filter but no

assurance is given that a more optimum non-linear filter does not exist.

Indeed, for non-Gaussian distributions of background with weighted high

radiance tails, a better non-linear filter may generally be found.

Let us find a matched linear filter for a non-Gaussian back-

ground distribution and a target signal of known time dependence. The

matched filter is one where the spectral density (power per unit band-

width) of the background is constant for all wavelengths so that the

filter is "matched" to the target signal. The spectral density of back-

ground is not generally constant so the matched filter must be preceded

by a filter which converts the background input to white noise. At

the same time, the target signal input will become modified. Figure 4.10

shows the hypothetical system being considered. The input background

noise is b(t) with a spectral density of Sb (0 ) given by

Sb (W) f e- JUy Rb(T) dt (4.106)

where Rb (r) is the autocorrelation function of the background.
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The autocorrelation function of the background input signal is

required in order to obtain the spectral density of the background (these

two functions are related by the Wiener theorem). If the background

irradiance is observed for a period of time,T the autocorrelation function

is
T

Rb (7-) lim b (A) b(X+t) d (4.107)
0

In ctual practice, since the period of observation does not approach

infinity, Rb(r) can be estimated for a stationary background by

Rb (T) 1 b(A ) b( x+r) d (4.108)

"0

The radiance from clouds is probably best described as a random

function of position coordinations with some provision made for rough

positional correlations which may exist. For such a case, the determi-

nation of the autocorrelation function becomes a statistical problem. The

autocorrelation function is defined in Eq. (4.107) as a time average.

There exists a theorem which states that the autocorrelation function may

be expressed as an ensemble average (average over a large collection of

possible background patterns) as well.

Because of the practical equivalence of the time average and

the ensemble average, the autocorrelation function can also be expressed

as (4.109)

Rb MT) - s l s2 P(sI's 2 1r) ds l ds2 = Sls 2P(S1 )p(s2 Is 't dsds2

where p(sl, s2 IV') is the probability that s1 and s2 will be found when

the time separation in their respective measurements is r . The signals

sI and s2 may be considered to be the outputs of a sensor at time t and
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to +- respectively. If the background radiance pattern is a weak

function of time, sI and s2 may also be considered as signals from

separate identical sensors separated in the object space by the

distance T times the scanning rate.

The average background power out of the prewhitening filter

will be

= 2 K1 (W ) K ( ) Sb (4)) d 60 (4.110)
1(i-)Sb

where K1 (.) is the transfer function of the prewhitening filter and,

in general, is complex. K1 )(W is its complex conjugate. K1 must be

chosen so that

Sbl (0) =S (4.111)

where Sbl (W ) is the spectral density of the background signal at the

output of the prewhitening filter and Sbl is a constant determined by

practical limitations of real sensors and preamplifiers.

Sbl (W ) = KI (t0) K1 (W)* Sb (to) = Sb1 (4.112)

Thus, with a knowledge of Sb (W ) and the choice of Sbl, it is possible

to solve for the K1 (u) required to whiten the background.

Since the autocorrelation function is an even function, i.e.,

Rb (-r) = Rb (- T) (4.113)

the spectral density Sb(0 ) defined by Eq. (4.106) will be real, and it

will always be possible to find an appropriate K1 (W) which will in

general be complex.
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The input target signal, t(rC), will also have been modified

by the prewhitening filter to a new target signal, tI (IC). If M (CO)

is defined as

M (e )wr t (-') dr (4.114)

and (?

t (T)= - eJ t M (a) du) (4.115)

then it may be shown that

t (r) = M (WO) K 1 (W) dwi (4.116)

The criterion of maximum signal power to background power

ratio requires that K2 (6)), the transfer function of the second filter,

be chosen to make a maximum of

[ 2 0) ]
2 .r 2 (4 .117)

I 1 jjeiJ(I o M (LO) K1I(( ) K2  (W) du)

7r Sbl JK2 (CO) K2 (CO0)* dc)

It is possible to show that the appropriate filter transfer function is

K2 (c40) e o M ((4)). (4.118)

To summarize, what has been done above is to apply optimum

linear filter theory to a non-Gaussian background which was described
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appropriately for this approach in terms of the autocorrelation function.

The a-tocorrelation function, spectral density (Wiener spectrum), and

joint probability density functions are related background descriptions

and their use in deriving the optimum linear filter was illustrated.

The particular approach chosen applied the criterion of maximum signal

to background signal ratio.

The assumptions which were made were that the target signal

w, a known function of time and that the autocorrelation function of

the random background signal was given. If the target signal is also

a random variable then a matched filter cannot be obtained by appli-

cation of Eq. (4.118). Missile targets will generate signals with a random

distribution of amplitudes although the time variation of the signal

may actually be determined by the scanning mode and scan rate parameters.

In the case where the target signal is a random variable its

autocorrelation function must be obtained (Eq. (4.109)) since the

actual form of the signal is not known with certainty but only pre-

dictively. If, then, the target Wiener spectrum (Fourier transform of

the target autocorrelation function) overlaps the Wiener spectrum of

the background, the proper choice of a filter is not immediately obvious

(Fig. 4.11). However, a criterion requiring the filter to generate a

maximum root-mean-square target signal to root-mean-square background

signal is evidently applicable. Thus, we are to find the linear filter

(or transfer function, K(6O)) which maximizes the ratio of Eq. (4.119).

t 2 J0 St (",)) K (Wd) dWout - 0(4.119)

out f Sb (W0) K (W) d)

0

where St () is the target spectral density.

4-60



St

Lo 513600

FIGURE 4.11. POWER SPECTRA
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Actually, more will be required of K(WO) than that it lead

to a maximum value for Eq. (4.119). For example, the condition of a

maximum of average target to average background power could be satis-

fied if K(W.) is infinite over that range of ") where Sb(WO) is zero

but S t(o)) remains finite. Such a filter cannot be realized in practice

since an infinite filter gain is implied. It should be possible to

find some compromise K(WO) which is practically realizable and yet

permits good signal processing and presentation to a decision operator.

This particular problem of random target signals will not be pursued

further.

The system depicted in Fig. 4.10 is completely linear and produces

the best peak target signal power to root mean square background signal

possible. However, a complete alarm system also contains a threshold

decision filter which is inherently non-linear. An alarm is sounded

if a signal is found to exceed a given threshold value or some other

condition is fulfilled. There is usually some finite probability that

the background alone will exceed the threshold, and it is just the peak

background signals that really concern us. One cannot, therefore, expect

the linear system which maximizes the peak target signal to the root-mean-

square background signal to be the best for discrimination purposes.

Considerations of other decision criteria and discrimination schemes

lead to similar conclusions. An example of another criterion is developed

in the following paragraph.

The total system transfer function of a matched linear filter

is

K(W) = KI (W) K2 (-'J) (4.120)

where we have seen that K1 (W.) is related to the reciprocal of the

input background spectral density and K2 (c.) is related to the input
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signal Fourier transform. Suppose then, that a detection system having

such a transfer function is required to distinguish missile targets from

severe cloud backgrounds using a signal gradient criterion. The target

is associated with high radiance gradients whereas a cloud is considered

to produce much smaller gradients. However, the transfer function of

the prewhitening filter raises the spectral density of the background at

high frequencies, making discrimination at this end of the spectrum more

difficult. The advantage of the point source resemblance of the target

is at least partially compromised.

A system providing the maximum ratio of target signal power

to root-mean-square background power may not be best for purposes of

discrimination of target signal presence from severe backgrounds. Indeed,

we have considered likely cases of background which have increased proba-

bility density above the value 6f a Gaussian prediction at high radiance

levels. Thus, the performance of the optimum linear filter could be

exceeded by a system specifically designed to discriminate on the basis

of some characteristic possessed by the high level background signals.

Since the infrared sensors and preamplifiers are inherent parts

of infrared detection systems, it will be germane to consider the require-

ments placed on these elements by the nature of the decision operator.

For a discrimination scheme which requires that some characteristic of

the signal be preserved the minimum mean-square error criterion is appli-

cable. For systems utilizing correlation as discussed in the previous

section, sensitivity may be the most important factor* which suggests the

Actually, the requirement that the probability density functions of target

and background inputs remain essentially unchanged may be a more stringent

requirement than high sensitivity. This would require a linear system

with a minimum system time constant.
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use of the maximum signal to noise criterion. Thus, such a criterion is

by no means inapplicable to our problem but must be restricted to those

subsystems where its application is appropriate.
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APPENDIX 4A

WIENER SPECTRA ON THE SURFACE OF A SPHERE

This appendix is concerned with the description of the

correlations between individual random variables representing the

radiance of particular resolvable points. The usual method of

description by autocorrelation functions or Wiener spectra defined

on a plane is very arbitrary. A flat plane is a poor representation

of the earth outside a very limited area and is similarly poor for an

apparent object surface of a particular equipment. The arbitrary

choice of a finite plane approximation allows representation of a

random pattern by a two-dimensional Fourier series. This repre-

sentation is adequate to reconstruct the pattern on the plane. It

does not allow correct matching of two partially non-overlapping

patterns and the plane approximation itself can only be used over

a small area where the difference between spherical and plane

trigonometry is comparable to a desired spatial resolution.

Consequently, it was decided to investigate the correlation

properties of radiance patterns on a sphere representing the earth

itself. The distortions involved in viewing these patterns would then

be considered to be part of the information processing in the observing

system.

It was first shown that the radiance patterns observed with

any arbitrary resolution could be represented (in the sense of recon-

struction) by a series of Laplace spherical harmonics. The asymptotic

properties and correlation-power spectral properties of these series

were investigated. It was found that the Wiener-Khintchine theorem is
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not valid in spherical geometry. The principal virtue of Fourier

representation is therefore nullified.

It is suggested that this observation has serious conse-

quences for Wiener spectral analyses of background in general. Two-

dimensional plane spectra are often used with the explicit or implicit

justification that a plane is an adequate approximation to a sphere

over a small region. It is assumed that the properties of the plane

Wi. .er spectra could be extended to spherical spectra at the expense

only of labor if the extra accuracy were ever required.

Suppose that the near infrared radiance pattern of the earth

is observed with a finite angular resolution OL from a series of

satellites at altitude h. Then the linear resolution of the measure-

ments at the earth surface is never less than OLh. The radiance is

also bounded in magnitude to a value at least less than a specular

reflection of the sun. Consequently, the observed pattern is con-

tinuous and absolutely integrable. It may be represented by a function

g(e,0) where the coordinates 9 and 0 are spherical angular coordinates.

Absolute integrability implies that the function g will have a Fourier

transform. The assumption of finite resolution implies that the

transform of the observable process will be band limited.

It would also be possible to have a sufficient number of

satellites spaced around the earth so that the entire surface would

be observed simultaneously. In this case, the complete function

g(@,0) must obey the periodicity constraints

g(9,0) = g(9, 0 + 2 'M)

g(e,0) = g(e + TW, 0)

Because of these constraints and band limited Fourier trans-

form ability, the function g(G, 0) can be represented in all the detail
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that it can be observed by a Fourier series with a finite number

of terms. The number of terms will be of the order of

2 f 4770R 2/(0h)2j . A particular form of Fourier series which

can be used to represent a function in spherical coordinates is the

series of Laplace spherical harmonics which consist of products between

a series of complex exponentials in hO and associated Legendre poly-

nomials in the n, h and 9. In this series the harmonic of order h,n

has h periods around the 9 = 1/2 (equator) circumference and n

periods around a 0 = 0 (meridian) circumference. The series expansion

is set out explicitly in the analysis section below.

Conceptually a class of background radiance processes is

selected as generated by a weather condition, a point of observation and

a sun location. A number of sample functions of this process are

observed on different occasions from an array of satellites. Each

sample function is broken down into its representation as a series

of Laplace spherical harmonics. The coefficients cnh of this series

together contain enough information to reconstruct each sample function.

Application of this technique to a number of sample functions will

yield a set of values for each c nh. The distribution of this set of

values is an estimate of the probability distribution of the coefficient.

4A.2 SPHERICAL HARMONICS

Any particular radiance pattern on the sphere can be repre-

sented by the series

g(,)(COS) + (a nh cos h 0 + bnh sin h 0) Pnh (cos 9)

a non ( nh n J
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where the ah and b are a series of Fourier coefficients, the
hnh

P are associated Legendre polynomials of the first kind. Then

series can be put in a more compact form as

00 n

g (0,0) c nh e Pn (cos 9)

n-0 h-n

because

n ih e ih )

ahcos h 0 + bnh sinh0= anh e +e )

h=O h=O 2

bnh i0 - ih0)

+ b (e i h O - e

n ihO -ihO
=~ -- (an - ibnh)+ (a__i_._

h nh 2 nh nh
h--O

n nE ih0

= Cnh e

h=-n

an -ibn

wherec = nh nh for h> 0
nh 2

cnh a no for h = 0

a nh + ibnh
Cn nh2 for h < 0

ch 2
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C2 Con-h = bn

The C oef ficients are found from the inLegrals

)- 
Y 

"

2n = do si+f dO g (0 0) P (cos 0)
no0 477 .f f'

-r 0

2n+1 L2 1!:1 of 7

i = 4"i (+11) sin 0 dO g (0,0) PII (cos 0) cos hO

2n+l -I ) h2l (n-h) dO jsin0 g(0,0) P (cos 0) sin hO
]111= 4-'- r (11+11) .

aui 1)(2nl1 ) dO sin Ode g (0,0) P h(cos 0) -hOanh ll 2"" (n+h) - b n

-/ 0

4A.3 CHlANGING COORDINATES

In order to investigate the description of correlation by

these series it Will be necessary to transform coordinates 0,0 to

others G1
, 0 through what amomntns io a rotation of the sphere. The

angle of rot at ion is given by

COSOL = COS 0 coS 0 + sill 0 sill 0 1 COS (0-0 1)

because the ,scalar product ol the vectors ( 0,0) and ( l,0,0 )

A.A = ,x + yy + zz
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= cos 0 cos 01 sin 9 sin 91 + sin 0 sin 01 sin 9 sin 91 + Cos 9 Cos

11e 1i

= cos 9 Cos 91 + sin 9 sin 9 (cos 0 cos 0 + sin 0 sin 0i)

= cos 9 cos 9 + sin 9 sin 9 cos (0-0)

1
But A.A = cos

h 1 ihO1

It can then be shown that P h (cos 9 ) e can be expressed in terms
n

of 9 and 0 and the rotation required to carry 9,0 into 9 , 0 by
n

P h (Cos 0i) eih I  E (n-r)' hr P r (cos 9) eir0
n c= (n-h)! S2 n n

r=-n

where

shr I - i(h+r)f -i(r-h)01 (Cos )h+r (sin )r-h
2n = (n+r) e e

dn+r (Cos2)n-h (Cos2 -i)n+h

d(cos Ty)

and the 1 ,0' and 'r are defined in terms of the direction cosines

of the axis of rotation from 0,0 to 91 01 and the magnitude of the

rotation as follows

Direction cosines of axis of rotation are

-- 1
w.r.ft. x = sinO- sinT 0 = tan (-ql/q2)

y q2 /, = cost'sin r /0fi tan (q 3 /q 4 )

z q3 /J = sinF cos = sin1 i + q2

2
v
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Magnitude of rotation C is related to q4

cos =q vcos Jcos Tcos 3 qi42 q4 2vff

v

and

sin2 -v ;2 2 2; 2 2in - =j ; =o q v =ql q4

specifically if v = 1, = sin 0/2.

The direction cosines of the axis of rotation may be determined as

follows:

Let an initial vector A be (1,9,0)

1 1a lagged vector B be (1,9I, 0i)

A = cos 0 sin 9, sin 0 sin 9, cos 9
1i 1 1 1

B=cos0 sin 9 , sin 0 sin , cos9 1

AxB=(AyB z - AzBy),(AzB -A (AxBy - Ay B)

The axis of rotation unit vector is (A x B). (i, j, k)/sino-

= 0 sin cos 91 - cos 9 sin 0 sin G1),

(cos 9 cos 0 sin - cos 0 sin 9 cos 9 1),

(cos 0 sin 9 sin 01 sin 91 Cos 01 sin 91 sin 0 sin 9) sin(-
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Solving a", f ,
q sin 0 sin 9 cos 9 - cos 9 sin sin 9tanC7' - - - -€ Ii
q 2 cos 0 cos 0 sin 9 cos 0 sin 9 cos

n 3 (cos 0 sin 9 sin 0 sin -Cos0 sinG sin0 sin) )

s in(/2
sinOL. cos O/2

sin 2 (sin 0 sin 9 cos 9- cos 9 sin 0 sin 9 ) +

(Cos 9 cos 0 sin 9 - cos 0 sin 9 cos 9 )2

Cos 2 (cos 0 sin 9 sin 0 sin 9 - cos 0 sin 9 sin 0 sin 9)2 + cos 2

1cs s i i 1I@ 1i 1 2
=(cos 0 sin 9 sin 0 sin 9 - cos 0 sin 9 sin 0 sin 9)

-(cos 0 sin 9 cos 0 sin 9 + sin 0 sin 9 sin 0 sin i + Cos Gcose 1 -1
2

sin 2r = sin2 0 sin 2 cos2 1 - 2 sin 0 sin 9 cosO1 cosO sin01 sin 91 +
o28 s2 1 si2lco2 s2@ c2@1.
cos 9 sin 0 sin 9 +Cos 0 sin 9 Cos 9 -

2cos0sin sin 1cos cos0 cos 1+cos2 9cos2 I0 sin2G 1

= sin 2 cos 2E

- 2 sin9 cos9 (sin0 cos9 1 sin01 sing1 + cos0 sin@I cos0 1 cos@l )

+ cos 9*sin 9
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= sin2 9 cos 2G + cos2@ sin92 1 
- 2 sing cos( sin@ cos 1

(sinO sin01 + coso coso I)

= sin2 9 cos2 9 + cos2 9 sin2 9 - 2 sing cosO sinG cosO1 cos (0 - 0i)

Note if 0 = 01

sin = (sing cos Il - cos9 sing1)2

2ri)

=sin (0 - ).

r=+ (9 - 9 + 2ef )

tan - sin0 (sing coscoscos9 sin 9i) = tan 0 0= 0 + 2 mr

coso (coso sing I 
- sing cos9 1 )

tan o s sini si - sin s in= 0 + nr

2 cos <0.

Also note that if 91 =9 +

0 =0 +

sin 2r = sin2 @ (cos 2G cos 2  + sin 2G sin 2 g 2 cos9 sing cos sing)

+ cos29 (sin29 cos 2  + cos2 9 sin 2  + 2 cos9 sing cost sins

- 2 sing cos9 tjcosO sing cos 2g _ sin 29 cos, sin +

Cos 2 aCosg9 sine cosO sing sin 2g) Cos7

cos2 = I - sin 
2
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4A.4 AUTOCORRELATION AND POWER SPECTRA

For a one-dimensional Fourier series representation on an

interval (-T,T)

00O  1 2TVlnx

g(x) G e

n = -00

T-2 Z nx

n g(x) e dx

_T

the two quantities

T

R( ) - Lim g(x) g(x + dx

T-,oo 2T T

and ,
G G

W = Lim n n
n T"4 0 2T

may be defined. They are called the autocorrelation function and power

spectral density of the random process g(x). They have far reaching

statistical implication if the process is stationary. Substituting the

series for g(x) into the integral for R(g)

1 T i21I' nx

R( -) Lim 2- g(xa ) g Gn e 2T dx
400 2Tn

Interchanging the orders of limiting processes (which is permissible if g(x) is

absolutely integrable)and changing variables to y = x +
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i2T2
2T Z.

R( ) -- e Lim T g(y) e dy
T4 00 -T

since the process g(x) is stationary this is

+i 2 rnA

R( ) Lim G G e
T-+ 0 n

which also implies

fT -i2 T n
W=Lim R ) e dWn T 400 i

This Fourier transform relationship between R( ) and W is called the

Wiener-Khintchine theorem. It is the purpose of this analysis to see

whether a similar relationship holds for the Laplace spherical harmonics.

4A.5 CORRELATION ON A GREAT CIRCLE

Consider first two special cases

(a) g(9, 0) = g(0)

and

(b) g(e, 0) - g(9)

In case (a) we have g(, 0) C n  ehO

and clearly x has been replaced by 0 with no other change but that the

range of 0 is restricted to lie in (-T(,Ir). The limiting process specified
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above is meaningless but the other identities carry through formally.

Case (b) may be written as

g(9,0) = g(cos 9) = Z P n (cos 9)
n n

C = 2n+1 g(cos 9) P (cos 9) sin e de
n 2 f "n

Now define R() sf n 9 d@ g(cos 6) g fcos(

"0

and substitute for g fcos(9 - )3

R( sin 9 d9 g(cos 9)n C n Pn fcos(-)

n

os + 2m= nln.m-'!P m (cos ) P n (cos
n cos(-) = Pn (cos 9) Pn (com) + (n4m): nn

cos m (0.0l)

taking 0 =0 1 and m = 0 which amounts to assuming that g(9,0) is constant

around lines of latitude

Pn fcos(e "C)? = Pn (cos 9) Pn (cosC)

R( ) C n Cn Pn (cos )f n d@ g o (cos 9)

n

P n (cos) C
2

n

which is a form of the required theorem.
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4A.6 CORRELATION IN SPHERICAL HARMONICS

In the general case define

R( ,n) f J dO j sing dO g(9,0) g(G , I )

with the intention of showing that this is equivalent to

R(g = constant E Y Cnh 2  eih(-0') P nh Cos (l)-01

n=O h=-n

- constant Z Cnh2 elhhf Pnh (cos )

n=O h-n

then

R fd sing dG g(0,0) ) Cnhe P (cos1)

n-O hf-n

rr
nd-(_O_(_)'>S' P'(osO)) h

= jsing dO g(n,O) Cnh (n-h)! 2n P r 0

Sn r=-n2 n

CP Znh nZ.(n-r) e ir h g pr (cos)
nO h=-n A-n (n-h) 2n dg c

The algebra required to perform this integration and compare with the

desired result is very tedious in general. It is therefore worthwhile

to test a special case in order that the labor may not be wasted.

Therefore, try a simple case where n = 2 and 0 = 0I. (Note that 0 = 0i
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does not imply a great circle correlation necessarily).

2

g (9 0)= E C2h e i h O P 2
h  (cos 9)

h=-2

all other coefficients are zero.
Also sin 2  sin2 ( 1-I 1 sin 2

tan tan 0

tan9 0

Taking the principal solutions

S.hr 1 -i( r-h)0 h+r r-h d 2+ r 2 2-h
4 (2+-) e (cos7) (sin I' dco 2 r)2+ r (Cos )

( in2 )2+h

so that

fdOeir 0 S 2n sin d g(9,0) Pr (cos 9)
2 n n

Shr

e i(r-h)O 2n+l (n-h)' nh

and 2 S hr
IR C)- (2+h) !(2- r).' 4 C

R~g,2h r=! 2 ei(r-h)O 2h
n=2 h=-2 C2 h r 2 (2-h). e4

and it is to be seen whether this is equal to

C hP 2 ch (Co )

We shall proceed to tabulate and compute these summations taking the

simpler second one first.
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TABLE 1

h

TABULATION OF (C 2h ) 2 p(y) d 2 2+h ( y 2 _1) 2

h--2 h2 2 2 dy

h 2+h

2 2 y2+h (y -1) Value of Total
Term Coefficient (1-Y dy Derivative Coefficient

2 1/8 (1-y2) d4 (y2 1) 2 24 3(1-y2)
22 dy4

2 d3  2 2

02 1/8 (l-y 2) d- (y2-1)C21 dy3 y3

dy

2 2o d (21)2 2_ 1 2

C20 1/8 (-y (y 1) 4 (3y -1) 1(3y -1)dy

C2 1 /8(lY) y~ (Y2 -1)2  4y(y 2 -l)

2 1/8 (l..y2) -1)2

C2- (y22_-) 2 (1-y2) 2 + . (l-y2)

Consequently the entire series should be

22 22 + i3y 2-1) c2 1  2 + 1 (1y 2 ) 23(1-y2)C2 + 3y -fy C2 1 321 C20 7y _y 2. 8 _. 2_
3lyC22 21 2 20 2-1 82-2

3 sin C 22 + 3cos sin c2 1 + C2cos f- 1)C20 - 'osgsin V . 1 ,--sin 2  
2
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TABLE 2

~ 21 ~ ~hr
C 2 71 2__!(2r)_ 4 (coof)

- -2 (2-h)!:2 -L(r-h)

.r-h
d2- - .2s .12-b 2+h

- L~lh 2 5 L ~ a (1-a)2 ai
h--2 (2-h) ~ 2+ d

Puttino z - cos2

+r r-h Value of

h r h coeff r coef a 2 (1-) 2 Derivative Derivative Product

-2 - 2'1/4:5 4! 
"2 

(1-a) 
°  

- z
4 

(8-1)0 21/77382

dto

-2 -1 2<4'5 3. ,'3/21-) A. 43 2Ir,312 01-

d
2

z2 2 17' (1)

-2 0 2 / 4 !5 2 !/2 . .
" 

( -Z)1 - 12d2

-2 1 27/'/425 1/3' S'4 (-Z)
3/2  

3 24z 3 h (1-a)
3 / 2

-2 2 2 rl45 1/4 so (1.,)2 d 24 2Z(1-8)
2

Total term in C 2 is 4 + .o 3 1 c082ain

2 1 31 
"  

-32 dO 3(-1) -2r4 z 3/2(1-)k

-2 - 4: (z)k -3 T
10

I2f'1 z- o d .2 2T'
-1 -1 - 3 (1L) a (4s-3) r a(,z-3)

5 YT do1
-(1-x) 6a(2.1) T 2 (1-a) (28.1)

-1 121-1 o.' /, ,I(-)
/  

2 -.2~ ,(1-)
$/

-1
dz2

-1 2 Lit /~ 1 (1..) 3/2 24 2~j. Irl xk 3/

o that the total term in C21 is

S21 -4 cos ~ + Cos
2 

f(4 cog- 3) + coafesJb (2 _-)

+ e l. (4 ... 
2 

-1) +i~cos sin 3J

-LC2_[ 4 coo 
4
E 2 cooa

3
f ioP+ cooe

2
f(f ainE.3) + cOqisfq( eiolf.1) - sif~
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It is now clear that the terms in C2 -2 and C2- obtained

on Table 2 have different values than those obtained on Table 1. For

example, when -- . 0 the term in C2 -1 goes to zero on Table 1 but

to 2 j15 on Table 2.

The values of the Cnh describe the radiance pattern. They

can be chosen arbitrarily from any set which keeps the pattern positive,

bounded and continuous. Consequently, the discrepancies in the function

of cos are not to be corrected by relations between the Ch'

Thus the Wiener-Khintchine theorem does not hold for the

particular spherical harmonic series
2g(, eih0  h

g(9,0) =  C2h e P2  (cos 9)

h=- 2

when the lag e-e I is arbitrary but 0-01 is zero. Consequently, the

theorem does not hold in general for spherical harmonics.
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